Skip to main content
The Journal of Headache and Pain logoLink to The Journal of Headache and Pain
. 2008 Aug 8;9(5):317–323. doi: 10.1007/s10194-008-0056-4

Investigation of the immunoreactivities of NOS enzymes and the effect of sumatriptan in adolescent rats using an experimental model of migraine

Semra Hiz Kurul 1,, Savas Demirpence 1, Müge Kiray 2, Kazim Tugyan 2, Osman Yilmaz 3, Galip Kose 4
PMCID: PMC3452203  PMID: 18688693

Abstract

The aim was to investigate the immunoreactivities for NOS enzymes in frontal cortex and meningeal vessels after chemical stimulation of the subarachnoid space of adolescent rats and the effect of sumatriptan pre-treatment on the immunoreactivities of the NOS enzymes. Male adolescent Wistar rats were used. Rats in group 1 did not taken intracisternal injection. Rats in group 2 were taken intracisternal autologous blood injection, but no sumatriptan pre-treatment. Rats in group 3 were taken intracisternal autologous blood injection, but they were taken sumatriptan pre-treatment. Tissue samples were investigated for the presence of NOS immunoreactivity. The mean values of immunolabeling intensities for NOS enzymes in frontal cortex and meningeal vessels were significantly increased in group 2 compared to group 1. The mean values of immunolabeling intensities for NOS enzymes in frontal cortex and meningeal vessels were significantly reduced in group 3 compared to group 2. These results suggest that, chemical stimulation of the subarachnoid space increased the immunoreactivities of NOS enzymes in the brain of adolescent rats. The increased NOS immunoreactivities could be antagonized by pre-treatment with sumatriptan.

Keywords: Headache, Migraine, Adolescence, Nitric oxide, Nitric oxide synthase, Sumatriptan

Full Text

The Full Text of this article is available as a PDF (341.6 KB).

Acknowledgments

Conflict of interest

None.

References

  • 1.Lewis DW. Headaches in infants and children. In: Swaiman KF, Ashwal S, editors. Pediatric neurology. 4. St Louis: Mosby Press; 2006. pp. 1183–1202. [Google Scholar]
  • 2.Dalkara T, Zervas NT, Moskowitz MA. From spreading depression to the trigeminovascular system. Neurol Sci. 2006;27(Suppl 2):86–90. doi: 10.1007/s10072-006-0577-z. [DOI] [PubMed] [Google Scholar]
  • 3.Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev. 2003;4:386–398. doi: 10.1038/nrn1102. [DOI] [PubMed] [Google Scholar]
  • 4.Goadsby PJ, Lipton RB, Ferrari MD. Migraine–current understanding and treatment. N Engl J Med. 2002;346:257–270. doi: 10.1056/NEJMra010917. [DOI] [PubMed] [Google Scholar]
  • 5.Buzzi MG, Moskowitz MA. The pathophysiology of migraine: year 2005. J Headache Pain. 2005;6:105–111. doi: 10.1007/s10194-005-0165-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia. 2002;22:112–116. doi: 10.1046/j.1468-2982.2002.00324.x. [DOI] [PubMed] [Google Scholar]
  • 7.Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28:183–187. doi: 10.1002/ana.410280213. [DOI] [PubMed] [Google Scholar]
  • 8.Zinck T, Illum R, Jansen-Olesen I. Increased expression of endothelial and neuronal nitric oxide synthase in dura and pia mater after air stres. Cephalalgia. 2005;26:14–25. doi: 10.1111/j.1468-2982.2005.00978.x. [DOI] [PubMed] [Google Scholar]
  • 9.Olesen J, Thomsen LL, Iversen HK. Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci. 1994;15:149–153. doi: 10.1016/0165-6147(94)90075-2. [DOI] [PubMed] [Google Scholar]
  • 10.Iversen HK, Olesen J, Tfelt-Hansen P. Intravenous nitroglycerin as an experimental headache model: basic characteristics. Pain. 1989;38:17–24. doi: 10.1016/0304-3959(89)90067-5. [DOI] [PubMed] [Google Scholar]
  • 11.Strecker T, Dux M, Messlinger K. Nitric oxide releases calcitonin-gene-related peptide from rat dura mater encephali promoting increases in meningeal blood flow. J Vasc Res. 2002;39:489–496. doi: 10.1159/000067206. [DOI] [PubMed] [Google Scholar]
  • 12.Strecker T, Dux M, Messlinger K. Increase in meningeal blood flow by nitric oxide-interaction with calcitonin gene-related peptide receptor and prostaglandin synthesis inhibition. Cephalalgia. 2002;22:233–241. doi: 10.1046/j.1468-2982.2002.00356.x. [DOI] [PubMed] [Google Scholar]
  • 13.Major PW, Grubisa HSI, Thie NMR. Triptans for treatment of acute pediatric migraine: A systematic literature review. Pediatr Neurol. 2003;29:425–429. doi: 10.1016/S0887-8994(03)00400-4. [DOI] [PubMed] [Google Scholar]
  • 14.Akerman S, Williamson DJ, Kaube H, Goadsby PJ. The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels. Eur J Pharmacol. 2002;452:223–228. doi: 10.1016/S0014-2999(02)02307-5. [DOI] [PubMed] [Google Scholar]
  • 15.Akerman S, Williamson DJ, Kaube H, Goadsby PJ. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol. 2002;137:62–68. doi: 10.1038/sj.bjp.0704842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bingham S, Davey PT, Sammons M, Raval P, Overend P, Parsons AA. Inhibition of inflammation-induced thermal hypersensitivity by sumatriptan through activation of 5-HT1B/1D receptors. Exp Neurol. 2001;167:65–73. doi: 10.1006/exnr.2000.7521. [DOI] [PubMed] [Google Scholar]
  • 17.Nozaki K, Boccalini P, Moskowitz MA. Expression of c-fos-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neurosci. 1992;49:669–680. doi: 10.1016/0306-4522(92)90235-T. [DOI] [PubMed] [Google Scholar]
  • 18.Liang Y, Fang M, Li J, Yew DT. Immunohistochemical localization of endothelial isoform (eNOS) in human cerebral arteries and the aorta. Int J Neurosci. 2006;116:1403–1417. doi: 10.1080/00207450500514375. [DOI] [PubMed] [Google Scholar]
  • 19.Bergerot A, Holland PR, Akerman S, et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006;24:1517–1534. doi: 10.1111/j.1460-9568.2006.05036.x. [DOI] [PubMed] [Google Scholar]
  • 20.Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical cord of the cat. Brain. 1991;114:100–111. doi: 10.1093/brain/114.2.1001. [DOI] [PubMed] [Google Scholar]
  • 21.Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ. Expression of c-fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res. 1993;629:95–102. doi: 10.1016/0006-8993(93)90486-7. [DOI] [PubMed] [Google Scholar]
  • 22.Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat. 1997;190:367–375. doi: 10.1046/j.1469-7580.1997.19030367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hoskin KL, Zagami AS, Goadsby PJ. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat. 1999;194:579–588. doi: 10.1046/j.1469-7580.1999.19440579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Nozaki K, Moskowitz MA, Boccalini P. CP-93, 129, sumatriptan, dihydroergotamine block c-fos expression within the rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol. 1992;106:409–415. doi: 10.1111/j.1476-5381.1992.tb14348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tajti J, Uddman R, Möller S, Sundler F, Edvinsson L. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst. 1999;76:176–183. doi: 10.1016/S0165-1838(99)00024-7. [DOI] [PubMed] [Google Scholar]
  • 26.Beck KF, Eberhardt W, Frank S, et al. Inducible NO synthase: role in cellular signaling. J Exp Biol. 1999;202:645–653. doi: 10.1242/jeb.202.6.645. [DOI] [PubMed] [Google Scholar]
  • 27.Viggiano E, Ferrara D, Izzo G, et al. Cortical spreading depression induces the expression of iNOS, HIF-1α, and LDH-A. Neuroscience. 2008;153:182–188. doi: 10.1016/j.neuroscience.2008.01.037. [DOI] [PubMed] [Google Scholar]
  • 28.Napolitano M, Zei D, Centonze D, et al. NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: Implications for Huntington’s disease. Neurosci Lett. 2008;434:241–246. doi: 10.1016/j.neulet.2007.09.056. [DOI] [PubMed] [Google Scholar]
  • 29.Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ. Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology. 1995;34:255–261. doi: 10.1016/0028-3908(94)00153-J. [DOI] [PubMed] [Google Scholar]
  • 30.Goadsby PJ, Hoskin KL. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain. 1996;67:355–359. doi: 10.1016/0304-3959(96)03118-1. [DOI] [PubMed] [Google Scholar]
  • 31.Hoskin KL, Kaube H, Goadsby PJ. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain. 1996;119:1419–1428. doi: 10.1093/brain/119.5.1419. [DOI] [PubMed] [Google Scholar]
  • 32.Longmore JD, Shaw D, Smith D, Hopkins R, McAllister G, Pickard JD, et al. Differential distribution of 5-HT1B and 5-HT1B-immunoreactivity within the human trigeminocerebrovascular system: implications fort he discovery of new antimigraine drugs. Cephalalgia. 1997;17:833–842. doi: 10.1046/j.1468-2982.1997.1708833.x. [DOI] [PubMed] [Google Scholar]
  • 33.Akerman S, Williamson DJ, Kaube H, Goadsby PJ. The effect of anti-migraine compounds on nitric oxide-induced dilatation of dural meningeal vessels. Eur J Pharmacol. 2002;452:223–228. doi: 10.1016/S0014-2999(02)02307-5. [DOI] [PubMed] [Google Scholar]
  • 34.Knyihár-Csillik E, Tajti J, Chadaide Z, Csillik B, Vécsei L. Functional immunohistochemistry of neuropeptides and nitric oxide synthase in the nerve fibers of the supratentorial dura mater in an experimental migraine model. Microsc Res Tech. 2001;53:193–211. doi: 10.1002/jemt.1084. [DOI] [PubMed] [Google Scholar]
  • 35.Suwattanasophon S, Phansuwan-Pujito P, Srikiatkhachorn A. 5-HT1B/1D serotonin receptor agonist attenuates nitroglycerin-evoked nitric oxide synthase expression in trigeminal pathway. Cephalalgia. 2003;23:825–832. doi: 10.1046/j.1468-2982.2003.00583.x. [DOI] [PubMed] [Google Scholar]
  • 36.Manrique C, François-Bellan AM, Segu L, Becquet D, et al. Impairment of serotoninergic transmission is followed by adaptive changes in 5HT1B binding sites in the rat suprachiasmatic nucleus. Brain Res. 1994;663:93–100. doi: 10.1016/0006-8993(94)90466-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Headache and Pain are provided here courtesy of BMC

RESOURCES