Skip to main content
The Journal of Headache and Pain logoLink to The Journal of Headache and Pain
. 2009 Dec 10;11(2):115–121. doi: 10.1007/s10194-009-0177-4

Lack of cold pressor test-induced effect on visual-evoked potentials in migraine

Gianluca Coppola 1,, Antonio Currà 2, Mariano Serrao 3,4, Cherubino Di Lorenzo 3, Manuela Gorini 2, Elisa Porretta 3, Alessia Alibardi 2, Vincenzo Parisi 1,5, Francesco Pierelli 3,4
PMCID: PMC3452283  PMID: 20012123

Abstract

In patients with migraine, the various sensory stimulation modalities, including visual stimuli, invariably fail to elicit the normal response habituation. Whether this lack of habituation depends on abnormal activity in the sub-cortical structures responsible for processing incoming information as well as nociception and antinociception or on abnormal cortical excitability per se remains debateable. To find out whether inducing tonic pain in the hand by cold pressure test (CPT) alters the lack of visual-evoked potential (VEP) habituation in migraineurs without aura studied between attacks we recorded VEPs in 19 healthy subjects and in 12 migraine patients during four experimental conditions: baseline; no-pain (hand held in warm water, 25°C); pain (hand held in cold water, 2–4°C); and after-effects. We measured P100 amplitudes from six blocks of 100 sweeps, and assessed habituation from amplitude changes between the six sequential blocks. In healthy subjects, the CPT decreased block 1 VEP amplitude and abolished the normal VEP habituation (amplitude decrease to repeated stimulation) in patients with migraine studied between attacks; it left block 1 VEP amplitude and abnormal VEP habituation unchanged. These findings suggest that the interictal cortical dysfunction induced by migraine prevents the cortical changes induced by tonic painful stimulation both during pain and after pain ends. Because such cortical changes presumably reflect plasticity mechanisms in the stimulated cortex, our study suggests altered plasticity of sensory cortices in migraine. Whether this abnormality reflects abnormal functional activity in the subcortical structures subserving tonic pain activation remains conjectural.

Keywords: Migraine, Cold pressor test, Visual-evoked potentials, Habituation, Brainstem, Thalamo-cortical activity

Full Text

The Full Text of this article is available as a PDF (257.5 KB).

Acknowledgment

This study was supported by grant from the Franco Michele Puca Award 2007 assigned by the Italian Society for the Study of Headaches (Società Italiana per lo Studio delle Cefalee, SISC).

Conflict of interest

None.

References

  • 1.Schoenen J. Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation? Biomed Pharmacother. 1996;50:71–78. doi: 10.1016/0753-3322(96)84716-0. [DOI] [PubMed] [Google Scholar]
  • 2.Coppola G, Pierelli F, Schoenen J. Habituation and migraine. Neurobiol Learn Mem. 2009;92:249–259. doi: 10.1016/j.nlm.2008.07.006. [DOI] [PubMed] [Google Scholar]
  • 3.Thompson RF, Spencer WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966;73:16–43. doi: 10.1037/h0022681. [DOI] [PubMed] [Google Scholar]
  • 4.Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton D, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney F, Wilson DA, Wu CF, Thompson RF. Habituation revisited: an updated and revised description of the behavioural characteristics of habituation. Neurobiol Learn Mem. 2009;92:135–138. doi: 10.1016/j.nlm.2008.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Aurora SK, Ahmad BK, Welch KMA, Bdardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 1998;50:1111–1114. doi: 10.1212/wnl.50.4.1111. [DOI] [PubMed] [Google Scholar]
  • 6.Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Visual cortex excitability in migraine with and without aura. Headache. 2001;41:565–572. doi: 10.1046/j.1526-4610.2001.041006565.x. [DOI] [PubMed] [Google Scholar]
  • 7.Kropp P, Gerber WD. Prediction of migraine attacks using a slow cortical potential, the continget negative variation. Neurosci Lett. 1998;257:73–76. doi: 10.1016/S0304-3940(98)00811-8. [DOI] [PubMed] [Google Scholar]
  • 8.Evers S, Quibeldey F, Grotemeyer KH, Suhr B, Husstedt IW. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia. 1999;19:485–491. doi: 10.1046/j.1468-2982.1999.019005485.x. [DOI] [PubMed] [Google Scholar]
  • 9.Siniatchkin M, Kropp P, Gerber WD, Stephani U. Migraine in childhood—are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosci Lett. 2000;279:1–4. doi: 10.1016/S0304-3940(99)00924-6. [DOI] [PubMed] [Google Scholar]
  • 10.Judit A, Sandor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia. 2000;20:714–719. doi: 10.1111/j.1468-2982.2000.00122.x. [DOI] [PubMed] [Google Scholar]
  • 11.Kropp P, Gerber WD. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia. 1995;15:123–128. doi: 10.1046/j.1468-2982.1995.015002123.x. [DOI] [PubMed] [Google Scholar]
  • 12.Coppola G, Currà A, Serrao M, Di Lorenzo C, Vatrika M, Parisi V, Pierelli F (2009) Tonic pain abolishes cortical habituation of visual evoked potentials in healthy subjects. J Pain (in press) [DOI] [PubMed]
  • 13.Petrovic P, Petersson KM, Hansson P, Ingvar M. Brainstem involvement in the initial response to pain. Neuroimage. 2004;22:995–1005. doi: 10.1016/j.neuroimage.2004.01.046. [DOI] [PubMed] [Google Scholar]
  • 14.Watanabe S, Kakigi R, Hoshiyama M, Kitamura Y, Koyama S, Shimojo M. Effects of noxious cooling of the skin on pain perception in man. J Neurol Sci. 1996;135:68–73. doi: 10.1016/0022-510X(95)00253-X. [DOI] [PubMed] [Google Scholar]
  • 15.Willer JC, Broucker T, Le Bars D. Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J Neurophysiol. 1989;62:1028–1038. doi: 10.1152/jn.1989.62.5.1028. [DOI] [PubMed] [Google Scholar]
  • 16.Serrao M, Perrotta A, Bartolo M, Fiermonte G, Pauri F, Rossi P, Parisi L, Pierelli F. Enhanced trigemino-cervical-spinal reflex recovery cycle in pain-free migraineurs. Headache. 2005;45:1061–1068. doi: 10.1111/j.1526-4610.2005.05188.x. [DOI] [PubMed] [Google Scholar]
  • 17.Sandrini G, Rossi P, Milanov I, Serrao M, Cecchini AP, Nappi G. Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia. 2006;26:782–789. doi: 10.1111/j.1468-2982.2006.01130.x. [DOI] [PubMed] [Google Scholar]
  • 18.Tommaso M, Sardaro M, Pecoraro C, Di Fruscolo O, Serpino C, Lamberti P, Livrea P. Effects of the remote C fibres stimulation induced by capsaicin on the blink reflex in chronic migraine. Cephalalgia. 2007;27:881–890. doi: 10.1111/j.1468-2982.2007.01357.x. [DOI] [PubMed] [Google Scholar]
  • 19.Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;9:267–276. doi: 10.1007/s10194-008-0058-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Tassorelli C, Sandrini G, Cecchini AP, Nappi RE, Sances G, Martignoni E. Changes in nociceptive flexion reflex threshold across the menstrual cycle in healthy women. Psychosom Med. 2002;64:621–626. doi: 10.1097/01.PSY.0000021945.35402.0D. [DOI] [PubMed] [Google Scholar]
  • 21.Sandrini G, Milanov I, Malaguti S, Nigrelli MP, Moglia A, Nappi G. Effects of hypnosis on diffuse noxious inhibitory controls. Physiol Behav. 2000;69:295–300. doi: 10.1016/S0031-9384(00)00210-9. [DOI] [PubMed] [Google Scholar]
  • 22.Backonja M, Howland EW, Wang J, Smith J, Salinsky M, Cleeland CS. Tonic changes in alpha power during immersion of the hand in cold water. Electroencephalogr Clin Neurophysiol. 1991;79:192–203. doi: 10.1016/0013-4694(91)90137-S. [DOI] [PubMed] [Google Scholar]
  • 23.Chang PF, Arendt-Nielsen L, Chen AC. Dynamic changes and spatial correlation of EEG activities during cold pressor test in man. Brain Res Bull. 2002;57:667–675. doi: 10.1016/S0361-9230(01)00763-8. [DOI] [PubMed] [Google Scholar]
  • 24.Chen CAN, Rappelsberger P. Topology of EEG coherence changes may reflect differential neural network activation in cold and pain perception. Brain Topogr. 1998;11:125–132. doi: 10.1023/A:1022254505510. [DOI] [PubMed] [Google Scholar]
  • 25.Ferracuti S, Seri S, Mattia D, Cruccu G. Quantitative EEG modifications during the cold water pressor test: hemispheric and hand differences. Int J Psychophysiol. 1994;17:261–268. doi: 10.1016/0167-8760(94)90068-X. [DOI] [PubMed] [Google Scholar]
  • 26.Groves PM, Thompson RF. Habituation: a dual-process theory. Psychol Rev. 1970;77:419–450. doi: 10.1037/h0029810. [DOI] [PubMed] [Google Scholar]
  • 27.Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol. 1990;28:597–613. doi: 10.1002/ana.410280502. [DOI] [PubMed] [Google Scholar]
  • 28.Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B. Haemodynamic brain responses to acute pain in humans: Sensory and attentional networks. Brain. 1999;122:1765–1780. doi: 10.1093/brain/122.9.1765. [DOI] [PubMed] [Google Scholar]
  • 29.Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW. Effect of photic stimulation on human visual cortex lactate and phosphates sing 1H and 51P magnetic resonance spectroscopy. J Cereb Blood Flow Met. 1992;12:584–592. doi: 10.1038/jcbfm.1992.82. [DOI] [PubMed] [Google Scholar]
  • 30.Simon RH, Zimmerman AW, Tasman A, Hale MS. Spectral analysis of photic stimulation in migraine. Electroencephalogr Clin Neurophysiol. 1982;53:270–276. doi: 10.1016/0013-4694(82)90084-0. [DOI] [PubMed] [Google Scholar]
  • 31.Tsounis S, Varfis G. Alpha rhythm power and the effect of photic stimulation in migraine with brain mapping. Clin Electroencephalogr. 1992;23:1–6. doi: 10.1177/155005949202300103. [DOI] [PubMed] [Google Scholar]
  • 32.Tommaso M, Sciruicchio V, Guido M, Sasanelli G, Puca F. Steady state visual-evoked potentials in headache: diagnostic value in migraine and tension-type headache. Cephalalgia. 1999;19:23–26. doi: 10.1111/j.1468-2982.1999.1901023.x. [DOI] [PubMed] [Google Scholar]
  • 33.Tommaso M, Marinazzo D, Nitti L, Pellicoro M, Guido M, Serpino C, Stramaglia S. Effects of levetiracetam vs topiramate and placebo on visually evoked phase synchronization changes of alpha rhythm in migraine. Clin Neurophysiol. 2007;118:2297–2304. doi: 10.1016/j.clinph.2007.06.060. [DOI] [PubMed] [Google Scholar]
  • 34.Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, Pasqua V, Schoenen J. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005;128:98–103. doi: 10.1093/brain/awh334. [DOI] [PubMed] [Google Scholar]
  • 35.Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P, Pierelli F, Schoenen J. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;27:1323–1330. doi: 10.1111/j.1468-2982.2007.01440.x. [DOI] [PubMed] [Google Scholar]
  • 36.Brighina F, Piazza A, Daniele O, Fierro B. Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp Brain Res. 2002;145:177–181. doi: 10.1007/s00221-002-1096-7. [DOI] [PubMed] [Google Scholar]
  • 37.Fierro B, Ricci R, Piazza A, Scalia S, Giglia G, Vitello G, Brighina F. 1 Hz rTMS enhances extrastriate cortex activity in migraine: evidence of a reduced inhibition? Neurology. 2003;61:1446–1448. doi: 10.1212/01.wnl.0000094823.74175.92. [DOI] [PubMed] [Google Scholar]
  • 38.Bohotin V, Fumal A, Vandenheede M, Gérard P, Bohotin C, Maertens de Noordhout A, Schoenen J. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain. 2002;125:912–922. doi: 10.1093/brain/awf081. [DOI] [PubMed] [Google Scholar]
  • 39.Fumal A, Bohotin V, Vandenheede M, Seidel L, Pasqua V, Noordhout AM, Schoenen J. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials: new insights in healthy subjects. Exp Brain Res. 2003;150:332–340. doi: 10.1007/s00221-003-1423-7. [DOI] [PubMed] [Google Scholar]
  • 40.Fumal A, Coppola G, Bohotin V, Gérardy PY, Seidel L, Donneau AF, Vandenheede M, Maertens de Noordhout A, Schoenen J. Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia. 2006;26:143–149. doi: 10.1111/j.1468-2982.2005.01013.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Headache and Pain are provided here courtesy of BMC

RESOURCES