Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(10):3190–3194. doi: 10.1073/pnas.81.10.3190

Potential use of biaromatic L-phenylalanyl derivatives as therapeutic agents in the treatment of sickle cell disease.

J R Votano, J Altman, M Wilchek, M Gorecki, A Rich
PMCID: PMC345247  PMID: 6587344

Abstract

N-Phenylacetyl-L-phenylalanine (PAP) and L-phenylalanyl-3-aminopyridine ( PAPA ) are biaromatic agents with properties that make them suitable candidates for the development of a useful therapeutic agent for the treatment of sickle cell disease. PAP and PAPA are taken up by the erythrocyte to give intra-/extracellular concentration ratios of 2.2 and 1.5, respectively, after a 2-hr exposure period. The intracellular buildup of PAP and PAPA produces moderate decreases in the mean corpuscular hemoglobin concentration (MCHC) of 6 and 10%, respectively, at 3 mM and a further decline in MCHC with increased concentration. Both PAP and PAPA increase the deoxy-Hb S solubility, CS. If the solubility in the absence of the agent is COS, PAP and PAPA have CS/COS values of 1.21 and 1.14 at 20 mM, respectively, compared with a value of 1.06 for L-phenylalanine itself. Filterability assays of partially dexygenated homozygous sickle cells shows an increase in cell flexibility of 7 to 16 times more than that of untreated cells when these agents are present at 3-6 mM. These results are largely due to the reduction in the Hb S polymer content of the treated cells. At 3 mM or less, both PAP and PAPA delay the onset of gelation in reversible sickle cells for time periods that are likely to be therapeutically useful.

Full text

PDF
3190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D. J., Perutz M. F., Phillips S. E. Physiological and x-ray studies of potential antisickling agents. Proc Natl Acad Sci U S A. 1983 Jan;80(2):324–328. doi: 10.1073/pnas.80.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asakura T., Ohnishi S. T., Adachi K., Ozguc M., Hashimoto K., Singer M., Russell M. O., Schwartz E. Effect of cetiedil on erythrocyte sickling: new type of antisickling agent that may affect erythrocyte membranes. Proc Natl Acad Sci U S A. 1980 May;77(5):2955–2959. doi: 10.1073/pnas.77.5.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benedict R. C., Richey B., Fall L., Gill S. J., Nagel R. L., Wyman J. Thermodynamics of anti-sickling agents with hemoglobin S. J Mol Biol. 1981 Aug 15;150(3):423–434. doi: 10.1016/0022-2836(81)90557-x. [DOI] [PubMed] [Google Scholar]
  4. Benjamin L. J., Kokkini G., Peterson C. M. Cetiedil: its potential usefulness in sickle cell disease. Blood. 1980 Feb;55(2):265–270. [PubMed] [Google Scholar]
  5. Bessis M., Feo C., Jones E. Quantitation of red cell deformability during progressive deoxygenation and oxygenation in sickling disorders (the use of an automated Ektacytometer). Blood Cells. 1982;8(1):17–28. [PubMed] [Google Scholar]
  6. Coletta M., Hofrichter J., Ferrone F. A., Eaton W. A. Kinetics of sickle haemoglobin polymerization in single red cells. Nature. 1982 Nov 11;300(5888):194–197. doi: 10.1038/300194a0. [DOI] [PubMed] [Google Scholar]
  7. Fabry M. E., Nagel R. L. Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells. 1982;8(1):9–15. [PubMed] [Google Scholar]
  8. Gill S. J., Benedict R. C., Fall L., Spokane R., Wyman J. Oxygen binding to sickle cell hemoglobin. J Mol Biol. 1979 May 15;130(2):175–189. doi: 10.1016/0022-2836(79)90425-x. [DOI] [PubMed] [Google Scholar]
  9. Gorecki M., Acquaye C. T., Wilchek M., Votano J. R., Rich A. Antisickling activity of amino acid benzyl esters. Proc Natl Acad Sci U S A. 1980 Jan;77(1):181–185. doi: 10.1073/pnas.77.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorecki M., Votano J. R., Rich A. Peptide inhibitors of sickle hemoglobin aggregation: effect of hydrophobicity. Biochemistry. 1980 Apr 15;19(8):1564–1568. doi: 10.1021/bi00549a005. [DOI] [PubMed] [Google Scholar]
  11. Kaperonis A. A., Bertles J. F., Chien S. Variability of intracellular pH within individual populations of SS and AA erythrocytes. Br J Haematol. 1979 Nov;43(3):391–400. doi: 10.1111/j.1365-2141.1979.tb03766.x. [DOI] [PubMed] [Google Scholar]
  12. Klotz I. M., Haney D. N., King L. C. Rational approaches to chemotherapy: antisickling agents. Science. 1981 Aug 14;213(4509):724–731. doi: 10.1126/science.7256275. [DOI] [PubMed] [Google Scholar]
  13. Noguchi C. T., Schechter A. N. Inhibition of sickle hemoglobin gelation by amino acids and related compounds. Biochemistry. 1978 Dec 12;17(25):5455–5459. doi: 10.1021/bi00618a020. [DOI] [PubMed] [Google Scholar]
  14. Poillon W. N. Noncovalent inhibitors of sickle hemoglobin gelation: effects of aliphatic alcohols, amides, and ureas. Biochemistry. 1980 Jul 8;19(14):3194–3199. doi: 10.1021/bi00555a014. [DOI] [PubMed] [Google Scholar]
  15. Poillon W. N. Noncovalent inhibitors of sickle hemoglobin gelation: effects of aryl-substituted alanines. Biochemistry. 1982 Mar 16;21(6):1400–1406. doi: 10.1021/bi00535a046. [DOI] [PubMed] [Google Scholar]
  16. Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. Prog Biophys Mol Biol. 1973;26:103–146. doi: 10.1016/0079-6107(73)90018-7. [DOI] [PubMed] [Google Scholar]
  17. Sunshine H. R., Hofrichter J., Ferrone F. A., Eaton W. A. Oxygen binding by sickle cell hemoglobin polymers. J Mol Biol. 1982 Jun 25;158(2):251–273. doi: 10.1016/0022-2836(82)90432-6. [DOI] [PubMed] [Google Scholar]
  18. Votano J. R., Gorecki M., Rich A. Sickle hemoglobin aggregation: a new class of inhibitors. Science. 1977 Jun 10;196(4295):1216–1219. doi: 10.1126/science.870976. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES