Skip to main content
Journal of Digital Imaging logoLink to Journal of Digital Imaging
. 1999 May;12(2):50–59. doi: 10.1007/BF03168843

Image quality degradation by light scattering in display devices

Michael J Flynn 1,2,, Aldo Badano 1,
PMCID: PMC3452495  PMID: 10342247

Abstract

Veiling glare and ambient light reflection can significantly degrade the quality of an image on a display device. Veiling glare is primarily associated with the diffuse spread of image signal caused by multiple light scattering in the emissive structure of the device. The glare ratio associated with a test image with a 1-cm-diameter black spot is reported as 555 for film, 89 for a monochrome monitor, and 25 for a color monitor. Diffuse light reflection results from ambient light entering the display surface and returning at random emission angles. The diffuse reflection coefficient (luminance/illuminance, 1/sr) is reported as 0.026 for film, 0.058 for a monochrome monitor, and 0.025 for a color monitor with an antireflective surface coating. Both processes increase the luminance in black regions and cause contrast reduction. Specular reflections interfere with detail in the displayed scene. The specular reflection coefficient (luminance/luminance) is reported as 0.011 for film, 0.041 for a monochrome monitor, and 0.021 for a color monitor with an antireflective coating.

Key words: display, image quality, glare, reflection, contrast

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Footnotes

Supported in part by a US Army Breast Cancer research grant (DAMD17-96-1-6283).

References

  • 1.Zeman HD, Hughes EB, Otis JN, et al. Veiling glare of a linear multichannel Si(li) detector. Proc SPIE. 1985;535:214–221. [Google Scholar]
  • 2.Swank RK. Calculation of modulation transfer functions of x-ray fluorescent screens. Appl Optic. 1973;12:1865–1870. doi: 10.1364/AO.12.001865. [DOI] [PubMed] [Google Scholar]
  • 3.Caruthers E. Monte Carlo studies of image spread by x-ray image intensifiers. Proc SPIE. 1985;535:140–147. [Google Scholar]
  • 4.Matsuda S, Nitoh T. Hare as applied to photographic lenses. Appl Optic. 1972;11:1850–1856. doi: 10.1364/AO.11.001850. [DOI] [PubMed] [Google Scholar]
  • 5.Beckman C, Nilsson O, Paulsson L-E. Intraocular light scattering in vision, artistic painting, and photography. Appl Optic. 1994;33:4749–4753. doi: 10.1364/AO.33.004749. [DOI] [PubMed] [Google Scholar]
  • 6.Spencer G, Shirley P, Zimmerman K, et al: Physicallybased glare effects for digital images. Computer Graphics Proceedings, Annual Conference Series SIGGRAPH 95, 1995, pp 325–334
  • 7.van Oekel JJ: Improving the contrast of CRTs under low ambient illumination with a graphite coating. Proceedings of the Society for Information Display, 1995, pp 427–430
  • 8.de Vries GC: Contrast-enhancement under low ambient illumination. Proceedings of the Society for Information Display, 1995, pp 32–35
  • 9.van Oekel JJ, Severens MJ, Timmermans GMH, et al: Improving contrast and color saturation of CRTs by Al2O3 shadow mask coating. Proceedings of the Society for Information Display, 1997, pp 436–439
  • 10.Kobayashi K, Masutani Y, Nakashima K, et al: IPS-mode TFT-LCDs for aircraft applications. Proceedings of the Society for Information Display, 1998, pp 70–73
  • 11.Badano A, Flynn MJ: Monte Carlo modeling of the luminance spread function in flat panel displays. International Display Research Conference, 1997, pp 382–385
  • 12.Badano A, Flynn MJ, Samei E, et al: Performance of low-voltage phosphors in emissive flat panel displays for radiologic applications. Proc SPIE 2707:312–321, 1996
  • 13.Badano A, Flynn MJ: Monte Carlo modeling of glare in cathode-ray tubes for medical imaging. Proceedings of the Society for information Display, 1998, pp 495–498
  • 14.Badano A, Flynn MJ. Image degradation by glare in radiologic display devices. Proc SPIE. 1997;3031:222–231. doi: 10.1117/12.273900. [DOI] [Google Scholar]
  • 15.Blume H: Very-high-resolution CRT display systems. Proceedings of the Society for Information Display, 1992, pp 699–702
  • 16.Boynton PA, Kelley EF: Accurate contrast-ratio measurements using a cone mask. Proceedings of the Society for Information Display, 1997, pp 823–826
  • 17.Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc London. 1937;122:428–450. doi: 10.1098/rspb.1937.0024. [DOI] [Google Scholar]
  • 18.Boynton PA, Kelley EF. Measuring the contrast ratio of displays. Information Display. 1996;11:24–27. [Google Scholar]
  • 19.Badano A, Flynn MJ. Experimental measurements of glare in cathode-ray tubes. Proc SPIE. 1998;3335:188–196. doi: 10.1117/12.312492. [DOI] [Google Scholar]
  • 20.Tong HS, Prando G: Hygroscopic ion-induced antiglare/ antistatic coating for CRT applications. Proceedings of the Society for Information Display, 1992
  • 21.Ono Y, Ohtani Y, Hiratsuka K, et al: A new antireflective and antistatic double-layered coating for CRTs. Proceedings of the Society for Information Display, 1992
  • 22.Brinkley R, Xu G, Abileah A, et al: Wide-viewing-angle AMLCD optimized for gray-scale operation. Proceedings of the Society for Information Display, 1998, pp 471–474
  • 23.Lloyd CJ, Mizukami M, Boyce PR. A preliminary model of lightning-display interaction. J Illuminating Engineering Soc. 1996;25:59–69. [Google Scholar]
  • 24.Jones GR, Kelley EF, Germer TA: Specular and diffuse reflection measurements of electronic displays. Proceedings of the Society for Information Display, 1996, pp 203–206
  • 25.Becker ME. Evaluation and characterization of display reflectance. Displays. 1998;19:35–54. doi: 10.1016/S0141-9382(98)00029-8. [DOI] [Google Scholar]
  • 26.Lindfors M. Accuracy and repeatability of the ISO 9241-7 test method. Displays. 1998;19:3–16. doi: 10.1016/S0141-9382(98)00026-2. [DOI] [Google Scholar]
  • 27.ISO: Technical report 9241-7: Ergonomic requirements for office work with visual display terminals, 1997
  • 28.Umezu N, Nakano Y, Sakai T, et al. Specular and diffuse reflection measurement feasibility study of ISO 9241 part 7 method. Displays. 1998;19:17–25. doi: 10.1016/S0141-9382(98)00027-4. [DOI] [Google Scholar]
  • 29.Kelley EF, Jones GR, Germer TA. Display reflectance model based on the BRDF. Displays. 1998;19:27–34. doi: 10.1016/S0141-9382(98)00028-6. [DOI] [Google Scholar]
  • 30.Peli E, Yang J, Goldstein R, et al. Effect of luminance on suprathreshold contrast perception. J Optical Soc America A. 1991;8:1352–1359. doi: 10.1364/JOSAA.8.001352. [DOI] [PubMed] [Google Scholar]
  • 31.ACR/NEMA Working Group XI: Greyscale display function standard, draft version 1.2. Technical report, ACR/NEMA, March 1997
  • 32.Blume H, Hemminger BM. Image presentation in digital radiology: Perspectives on the emerging DICOM display function standard and its application. Radiographics. 1997;17:769–777. doi: 10.1148/radiographics.17.3.9153711. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Digital Imaging are provided here courtesy of Springer

RESOURCES