Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(10):3223–3227. doi: 10.1073/pnas.81.10.3223

Shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons.

M H Jacob, D K Berg, J M Lindstrom
PMCID: PMC345254  PMID: 6203117

Abstract

Monoclonal antibodies raised against purified acetylcholine receptor from muscle and electric organ were tested for cross-reaction with surface components on chicken ciliary ganglion neurons. Indirect immunofluorescence indicated that antibodies to a determinant in the "main immunogenic region" of the receptor bind to the neurons in culture. Ultrastructural studies on 16-day embryonic ganglia, using horseradish peroxidase-conjugated monoclonal antibody, revealed that most of the conjugate labeling was associated with synaptic membrane on the neurons. A lesser amount of labeling was associated with the short processes extending from the neuronal somata in the region of preganglionic innervation. The labeling was blocked by coincubation with unlabeled antibodies of appropriate specificity and not by nonimmune serum. The pattern of labeling was clearly different from that previously found for a horseradish peroxidase conjugate of alpha-bungarotoxin: the toxin conjugate bound extensively to the short processes but not to synaptic membrane on the neurons. The synaptic antigen identified here by the cross-reacting antibodies is a candidate for the synaptic acetylcholine receptor on chicken ciliary ganglion neurons.

Full text

PDF
3223

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz H. Characterization of the alpha-bungarotoxin receptor in chick-embryo retina. Eur J Biochem. 1981 Jun;117(1):131–139. doi: 10.1111/j.1432-1033.1981.tb06311.x. [DOI] [PubMed] [Google Scholar]
  2. Block G. A., Billiar R. B. Immunologic similarities between the hypothalamic alpha-bungarotoxin receptor and the Torpedo californica nicotinic cholinergic receptor. Brain Res. 1979 Dec 14;178(2-3):381–387. doi: 10.1016/0006-8993(79)90700-5. [DOI] [PubMed] [Google Scholar]
  3. Chiappinelli V. A., Cohen J. B., Zigmond R. E. The effects of alpha- and beta-neurotoxins from the venoms of various snakes on transmission in autonomic ganglia. Brain Res. 1981 Apr 27;211(1):107–126. doi: 10.1016/0006-8993(81)90070-6. [DOI] [PubMed] [Google Scholar]
  4. DE LORENZO A. J. The fine structure of synapses in the ciliary ganglion of the chick. J Biophys Biochem Cytol. 1960 Feb;7:31–36. doi: 10.1083/jcb.7.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  6. Froehner S. C., Douville K., Klink S., Culp W. J. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J Biol Chem. 1983 Jun 10;258(11):7112–7120. [PubMed] [Google Scholar]
  7. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  8. Gomez C. M., Richman D. P. Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4089–4093. doi: 10.1073/pnas.80.13.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hess A. Developmental changes in the structure of the synapse on the myelinated cell bodies of the chicken ciliary ganglion. J Cell Biol. 1965 Jun;25(3 Suppl):1–19. doi: 10.1083/jcb.25.3.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hurn B. A., Chantler S. M. Production of reagent antibodies. Methods Enzymol. 1980;70(A):104–142. doi: 10.1016/s0076-6879(80)70044-7. [DOI] [PubMed] [Google Scholar]
  11. Jacob M. H., Berg D. K. The ultrastructural localization of alpha-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J Neurosci. 1983 Feb;3(2):260–271. doi: 10.1523/JNEUROSCI.03-02-00260.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacob M., Lentz T. L. Localization of acetylcholine receptors by means of horseradish peroxidase-alpha-bungarotoxin during formation and development of the neuromuscular junction in the chick embryo. J Cell Biol. 1979 Jul;82(1):195–211. doi: 10.1083/jcb.82.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MARTIN A. R., PILAR G. TRANSMISSION THROUGH THE CILIARY GANGLION OF THE CHICK. J Physiol. 1963 Sep;168:464–475. doi: 10.1113/jphysiol.1963.sp007203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marshall L. M. Synaptic localization of alpha-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1948–1952. doi: 10.1073/pnas.78.3.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morley B. J., Dwyer D. S., Strang-Brown P. F., Bradley R. J., Kemp G. E. Evidence that certain peripheral anti-acetylcholine receptor antibodies do not interact with brain BuTX binding sites. Brain Res. 1983 Feb 28;262(1):109–116. doi: 10.1016/0006-8993(83)90474-2. [DOI] [PubMed] [Google Scholar]
  18. Nishi R., Berg D. K. Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. J Neurosci. 1981 May;1(5):505–513. doi: 10.1523/JNEUROSCI.01-05-00505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Norman R. I., Mehraban F., Barnard E. A., Dolly J. O. Nicotinic acetylcholine receptor from chick optic lobe. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1321–1325. doi: 10.1073/pnas.79.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patrick J., Stallcup W. B. Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4689–4692. doi: 10.1073/pnas.74.10.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  22. Ravdin P. M., Berg D. K. Inhibition of neuronal acetylcholine sensitivity by alpha-toxins from Bungarus multicinctus venom. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2072–2076. doi: 10.1073/pnas.76.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith M. A., Margiotta J. F., Berg D. K. Differential regulation of acetylcholine sensitivity and alpha-bungarotoxin-binding sites on ciliary ganglion neurons in cell culture. J Neurosci. 1983 Nov;3(11):2395–2402. doi: 10.1523/JNEUROSCI.03-11-02395.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swanson L. W., Lindstrom J., Tzartos S., Schmued L. C., O'Leary D. D., Cowan W. M. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4532–4536. doi: 10.1073/pnas.80.14.4532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tzartos S. J., Lindstrom J. M. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci U S A. 1980 Feb;77(2):755–759. doi: 10.1073/pnas.77.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tzartos S. J., Rand D. E., Einarson B. L., Lindstrom J. M. Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem. 1981 Aug 25;256(16):8635–8645. [PubMed] [Google Scholar]
  27. Tzartos S., Langeberg L., Hochschwender S., Lindstrom J. Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett. 1983 Jul 11;158(1):116–118. doi: 10.1016/0014-5793(83)80688-7. [DOI] [PubMed] [Google Scholar]
  28. Watters D., Maelicke A. Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry. 1983 Apr 12;22(8):1811–1819. doi: 10.1021/bi00277a011. [DOI] [PubMed] [Google Scholar]
  29. Wonnacott S., Harrison R., Lunt G. Immunological cross-reactivity between the alpha-bungarotoxin-binding component from rat brain and nicotinic acetylcholine receptor. J Neuroimmunol. 1982 Aug;3(1):1–13. doi: 10.1016/0165-5728(82)90013-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES