Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(12):3622–3625. doi: 10.1073/pnas.81.12.3622

Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation.

K A Albert, W C Wu, A C Nairn, P Greengard
PMCID: PMC345270  PMID: 6233611

Abstract

Calmodulin was previously found to inhibit the Ca2+/phospholipid-dependent phosphorylation of an endogenous substrate, called the 87-kilodalton protein, in a crude extract prepared from rat brain synaptosomal cytosol. We investigated the mechanism of this inhibition, using Ca2+/phospholipid-dependent protein kinase and the 87-kilodalton protein, both of which had been purified to homogeneity from bovine brain. Rabbit brain calmodulin and some other Ca2+-binding proteins inhibited the phosphorylation of the 87-kilodalton protein by this kinase in the purified system. Calmodulin also inhibited the Ca2+/phospholipid-dependent phosphorylation of H1 histone, synapsin I, and the delta subunit of the acetylcholine receptor, with use of purified components. These results suggest that calmodulin may be a physiological regulator of Ca2+/phospholipid-dependent protein kinase.

Full text

PDF
3622

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cox D. E., Edstrom R. D. Inhibition by calmodulin of the cAMP-dependent protein kinase activation of phosphorylase kinase. J Biol Chem. 1982 Nov 10;257(21):12728–12733. [PubMed] [Google Scholar]
  2. Fan C. C., Powell D. W. Calcium/calmodulin inhibition of coupled NaCl transport in membrane vesicles from rabbit ileal brush border. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5248–5252. doi: 10.1073/pnas.80.17.5248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Girardot J. M., Kempf J., Cooper D. M. Role of calmodulin in the effect of guanyl nucleotides on rat hippocampal adenylate cyclase: involvement of adenosine and opiates. J Neurochem. 1983 Sep;41(3):848–859. doi: 10.1111/j.1471-4159.1983.tb04818.x. [DOI] [PubMed] [Google Scholar]
  4. Grand R. J., Perry S. V. The binding of calmodulin to myelin basic protein and histone H2B. Biochem J. 1980 Aug 1;189(2):227–240. doi: 10.1042/bj1890227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grand R. J., Perry S. V., Weeks R. A. Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem J. 1979 Feb 1;177(2):521–529. doi: 10.1042/bj1770521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huttner W. B., Greengard P. Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5402–5406. doi: 10.1073/pnas.76.10.5402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Itano T., Itano R., Penniston J. T. Interactions of basic polypeptides and proteins with calmodulin. Biochem J. 1980 Sep 1;189(3):455–459. doi: 10.1042/bj1890455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iwasa Y., Takai Y., Kikkawa U., Nishizuka Y. Phosphorylation of calf thymus H1 histone by calcium-activated, phospholipid-dependent protein kinase. Biochem Biophys Res Commun. 1980 Sep 16;96(1):180–187. doi: 10.1016/0006-291x(80)91198-5. [DOI] [PubMed] [Google Scholar]
  9. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  10. Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Legrand C., Clos J., Legrand J., Langley O. K., Ghandour M. S., Labourdette G., Gombos G., Vincendon G. Localization of S100 protein in the rat cerebellum: an immunoelectron microscope study. Neuropathol Appl Neurobiol. 1981 Jul-Aug;7(4):299–306. doi: 10.1111/j.1365-2990.1981.tb00101.x. [DOI] [PubMed] [Google Scholar]
  13. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  14. Nishikawa M., Hidaka H., Adelstein R. S. Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. The effect on actin-activated MgATPase activity. J Biol Chem. 1983 Dec 10;258(23):14069–14072. [PubMed] [Google Scholar]
  15. Patel J., Marangos P. J., Heydorn W. E., Chang G., Verma A., Jacobowitz D. S-100-mediated inhibition of brain protein phosphorylation. J Neurochem. 1983 Oct;41(4):1040–1045. doi: 10.1111/j.1471-4159.1983.tb09048.x. [DOI] [PubMed] [Google Scholar]
  16. Patel J., Marangos P. J. Modulation of brain protein phosphorylation by the S-100 protein. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1089–1093. doi: 10.1016/0006-291x(82)91888-5. [DOI] [PubMed] [Google Scholar]
  17. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  18. Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions. J Biol Chem. 1983 Feb 10;258(3):2010–2013. [PubMed] [Google Scholar]
  19. Schatzman R. C., Raynor R. L., Fritz R. B., Kuo J. F. Purification to homogeneity, characterization and monoclonal antibodies of phospholipid-sensitive Ca2+-dependent protein kinase from spleen. Biochem J. 1983 Feb 1;209(2):435–443. doi: 10.1042/bj2090435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sieghart W., Schulman H., Greengard P. Neuronal localization of Ca2+-dependent protein phosphorylation in brain. J Neurochem. 1980 Mar;34(3):548–553. doi: 10.1111/j.1471-4159.1980.tb11179.x. [DOI] [PubMed] [Google Scholar]
  21. Thayer S. A., Lemon R. H., Fairhurst A. S. Calmodulin inhibition of brain membrane phosphorylation. J Neurochem. 1983 Oct;41(4):1090–1093. doi: 10.1111/j.1471-4159.1983.tb09056.x. [DOI] [PubMed] [Google Scholar]
  22. Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J Biol Chem. 1977 Jul 25;252(14):5155–5163. [PubMed] [Google Scholar]
  23. Wu W. C., Walaas S. I., Nairn A. C., Greengard P. Calcium/phospholipid regulates phosphorylation of a Mr "87k" substrate protein in brain synaptosomes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5249–5253. doi: 10.1073/pnas.79.17.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES