Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(12):3660–3664. doi: 10.1073/pnas.81.12.3660

Active-site carbamate formation and reaction-intermediate-analog binding by ribulosebisphosphate carboxylase/oxygenase in the absence of its small subunits

T John Andrews 1,*, Beth Ballment 1
PMCID: PMC345278  PMID: 16593473

Abstract

Even though depleted of more than 90% of its small subunits, ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus ACMM 323 still formed a stable complex with 2-carboxyarabinitol 1,5-bisphosphate from which exchange of the activator CO2 molecule was prevented. The stoichiometry between nonexchangeable CO2 and large subunits was unchanged regardless of the presence or absence of small subunits. The small-subunit-depleted enzyme was also “activated” by exposure to CO2 and Mg2+, although it was necessary for the small subunits to be bound before this “activation” could be expressed. Binding of small subunits occurred rapidly, its rate depending on subunit concentration. The initial rate of “activation” was not slowed in the absence of small subunits but its extent at equilibrium was reduced. These observations are not consistent with an obligate role for the small subunits in the activation process. Their necessity in catalysis must stem from a more subtle involvement in the catalytic mechanism itself.

Keywords: cyanobacteria, Synechococcus, protein subunit interactions

Full text

PDF
3660

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews T. J., Abel K. M. Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp. J Biol Chem. 1981 Aug 25;256(16):8445–8451. [PubMed] [Google Scholar]
  2. Andrews T. J., Ballment B. The function of the small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem. 1983 Jun 25;258(12):7514–7518. [PubMed] [Google Scholar]
  3. Asami S., Takabe T., Akazawa T., Codd G. A. Ribulose 1,5-bisphosphate carboxylase from the halophilic cyanobacterium Aphanothece halophytica. Arch Biochem Biophys. 1983 Sep;225(2):713–721. doi: 10.1016/0003-9861(83)90082-6. [DOI] [PubMed] [Google Scholar]
  4. Badger M. R., Lorimer G. H. Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Biochemistry. 1981 Apr 14;20(8):2219–2225. doi: 10.1021/bi00511a023. [DOI] [PubMed] [Google Scholar]
  5. Gibson J. L., Tabita F. R. Activation of ribulose 1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides: probable role of the small subunit. J Bacteriol. 1979 Dec;140(3):1023–1027. doi: 10.1128/jb.140.3.1023-1027.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall N. P., Pierce J., Tolbert N. E. Formation of a carboxyarabinitol bisphosphate complex with ribulose bisphosphate carboxylase/oxygenase and theoretical specific activity of the enzyme. Arch Biochem Biophys. 1981 Nov;212(1):115–119. doi: 10.1016/0003-9861(81)90349-0. [DOI] [PubMed] [Google Scholar]
  7. Hartman F. C., Stringer C. D., Omnaas J., Donnelly M. I., Fraij B. Purification and sequencing of cyanogen bromide fragments from ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Arch Biochem Biophys. 1982 Dec;219(2):422–437. doi: 10.1016/0003-9861(82)90174-6. [DOI] [PubMed] [Google Scholar]
  8. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  9. Lorimer G. H. Evidence for the existence of discrete activator and substrate sites for CO2 on ribulose-1,5-bisphosphate carboxylase. J Biol Chem. 1979 Jul 10;254(13):5599–5601. [PubMed] [Google Scholar]
  10. McCurry S. D., Pierce J., Tolbert N. E., Orme-Johnson W. H. On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem. 1981 Jul 10;256(13):6623–6628. [PubMed] [Google Scholar]
  11. Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
  12. Miziorko H. M. Ribulose-1,5-biphosphate carboxylase. Evidence in support of the existence of distinct CO2 activator and CO2 substrate sites. J Biol Chem. 1979 Jan 25;254(2):270–272. [PubMed] [Google Scholar]
  13. Miziorko H. M., Sealy R. C. Characterization of the ribulosebisphosphate carboxylase-carbon dioxide-divalent cation-carboxypentitol bisphosphate complex. Biochemistry. 1980 Mar 18;19(6):1167–1171. doi: 10.1021/bi00547a020. [DOI] [PubMed] [Google Scholar]
  14. Paulsen J. M., Lane M. D. Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry. 1966 Jul;5(7):2350–2357. doi: 10.1021/bi00871a025. [DOI] [PubMed] [Google Scholar]
  15. Pierce J., Tolbert N. E., Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry. 1980 Mar 4;19(5):934–942. doi: 10.1021/bi00546a018. [DOI] [PubMed] [Google Scholar]
  16. Shinozaki K., Yamada C., Takahata N., Sugiura M. Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4050–4054. doi: 10.1073/pnas.80.13.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tabita F. R., McFadden B. A. D-ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. II. Quaternary structure, composition, catalytic, and immunological properties. J Biol Chem. 1974 Jun 10;249(11):3459–3464. [PubMed] [Google Scholar]
  18. Zurawski G., Perrot B., Bottomley W., Whitfeld P. R. The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res. 1981 Jul 24;9(14):3251–3270. doi: 10.1093/nar/9.14.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES