Abstract
Interactions of myristic acid with bovine serum albumin were studied by 13C NMR spectroscopy at 50.3 MHz using 90% isotopically substituted [1-13C]-, [3-13C]-, and [14-13C]myristic acids, either individually or in a combination of all three with albumin. At pH 7.4, two or more resonances of different intensities were observed for each 13C-enriched myristic acid. Carboxyl and methylene C-3 resonances corresponding to the major myristic acid environment(s) exhibited pH-dependent chemical shift changes indicative of protonation below pH 6.7; in contrast, carboxyl groups in minor environments were resistant to protonation. 13C NMR spectra obtained as a function of the molar ratio of [3-13C]- and [14-13C]myristic acid to bovine serum albumin (from 0.7 to 5.6) revealed at least two narrow resonances for each carbon at all molar ratios. Thus, bovine serum albumin binding sites for myristic acid are heterogeneous with respect to titration behavior and with respect to the local magnetic environment at both the polar and the nonpolar ends of the fatty acid. The narrow resonances observed for the methylene and methyl carbons are inconsistent with complete immobilization of the protein-bound acid molecules. Together with spin- lattice relaxation times and nuclear Overhauser enhancements, the linewidth results indicate that bound myristic acid has internal motions that are rapid compared with overall protein tumbling and that the C-3 methylene carbon is more restricted than the terminal methyl carbon.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
- Cistola D. P., Small D. M., Hamilton J. A. Ionization behavior of aqueous short-chain carboxylic acids: a carbon-13 NMR study. J Lipid Res. 1982 Jul;23(5):795–799. [PubMed] [Google Scholar]
- Ginsburg G. S., Small D. M., Hamilton J. A. Temperature-dependent molecular motions of cholesterol esters: a carbon-13 nuclear magnetic resonance study. Biochemistry. 1982 Dec 21;21(26):6857–6867. doi: 10.1021/bi00269a036. [DOI] [PubMed] [Google Scholar]
- Gunstone F. D., Pollard M. R., Scrimgeour C. M., Gilman N. W., Holland B. C. Fatty acids. Part 48. 13C nuclear magnetic resonance studies of acetylenic fatty acids. Chem Phys Lipids. 1976 Sep;17(1):1–13. doi: 10.1016/0009-3084(76)90031-1. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Small D. M. Solubilization and localization of triolein in phosphatidylcholine bilayers: a 13C NMR study. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6878–6882. doi: 10.1073/pnas.78.11.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuznetsov A. N., Ebert B., Lassmann G., Shapiro A. B. Adsorption of small molecules to bovine serum albumin studied by the spin-probe method. Biochim Biophys Acta. 1975 Jan 30;379(1):139–146. doi: 10.1016/0005-2795(75)90015-x. [DOI] [PubMed] [Google Scholar]
- Lagercrantz C., Setaka M. Some binding properties of human serum albumin as studied by the spin labels 12-doxyl stearic acid and its methyl ester. Acta Chem Scand B. 1975;29(3):397–398. doi: 10.3891/acta.chem.scand.29b-0397. [DOI] [PubMed] [Google Scholar]
- Morrisett J. D., Pownall H. J., Gotto A. M., Jr Bovine serum albumin. Study of the fatty acid and steroid binding sites using spin-labeled lipids. J Biol Chem. 1975 Apr 10;250(7):2487–2494. [PubMed] [Google Scholar]
- Norton R. S., Clouse A. O., Addleman R., Allerhand A. Studies of proteins in solution by natural-abundance carbon-13 nuclear magnetic resonance. Spectral resolution and relaxation behavior at high magnetic field strengths. J Am Chem Soc. 1977 Jan 5;99(1):79–83. doi: 10.1021/ja00443a016. [DOI] [PubMed] [Google Scholar]
- Parks J. S., Cistola D. P., Small D. M., Hamilton J. A. Interactions of the carboxyl group of oleic acid with bovine serum albumin: a 13C NMR study. J Biol Chem. 1983 Aug 10;258(15):9262–9269. [PubMed] [Google Scholar]
- Perkins R. C., Jr, Abumrad N., Balasubramanian K., Dalton L. R., Beth A. H., Park J. H., Park C. R. Equilibrium binding of spin-labeled fatty acids to bovine serum albumin: suitability as surrogate ligands for natural fatty acids. Biochemistry. 1982 Aug 17;21(17):4059–4064. doi: 10.1021/bi00260a023. [DOI] [PubMed] [Google Scholar]
- Ruf H. H., Gratzl M. Binding of nitroxide stearate spin labels to bovine serum albumin. Biochim Biophys Acta. 1976 Sep 28;446(1):134–142. doi: 10.1016/0005-2795(76)90105-7. [DOI] [PubMed] [Google Scholar]
- Sogami M., Foster J. F. Isomerization reactions of charcoal-defatted bovine plasma albumin. The N-F transition and acid expansion. Biochemistry. 1968 Jun;7(6):2172–2182. doi: 10.1021/bi00846a020. [DOI] [PubMed] [Google Scholar]
- Sparrow J. T., Patel K. M., Morrisett J. D. Synthesis of carbon-13-labeled tetradecanoic acids. J Lipid Res. 1983 Jul;24(7):938–941. [PubMed] [Google Scholar]
- Spector A. A. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Wilbur D. J., Norton R. S., Clouse A. O., Addleman R., Allerhand A. Determination of rotational correlation times of proteins in solution from carbon-13 spin-lattice relaxation measurements. Effect of magnetic field strength and anisotropic rotation. J Am Chem Soc. 1976 Dec 8;98(25):8250–8254. doi: 10.1021/ja00441a059. [DOI] [PubMed] [Google Scholar]
- Wosilait W. D., Soler-Argilage C., Nagy P. A theoretical analysis of the binding of palmitate by human serum albumin. Biochem Biophys Res Commun. 1976 Jul 26;71(2):419–426. doi: 10.1016/0006-291x(76)90804-4. [DOI] [PubMed] [Google Scholar]