Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(12):3733–3736. doi: 10.1073/pnas.81.12.3733

Partial deglycosylation of chloroplast coupling factor 1 (CF1) prevents the reconstitution of photophosphorylation.

T E Maione, A T Jagendorf
PMCID: PMC345293  PMID: 6233612

Abstract

Treatment of spinach chloroplast coupling factor 1 (CF1) with a mixture of glycosidases resulted in the removal of approximately 75% of the carbohydrate associated with the enzyme. The ATPase of CF1 was not activated by this treatment nor were its heat-activated or methanol-dependent ATPase activities inhibited. The deglycosylated enzyme, however, was unable to catalyze photophosphorylation when recoupled with CF1-depleted thylakoids. The glycosidase-treated protein competed with native CF1 for specific binding sites on the depleted membranes and was able to reconstitute proton uptake in uncoupled thylakoids. The inhibition of photophosphorylation could not be overcome with added delta subunit. We conclude that deglycosylated CF1 was unaffected in its ability to bind to the membrane sector of the chloroplast proton-pumping ATPase (CF0) but was altered in some property essential for photophosphorylation but not ATPase activity.

Full text

PDF
3733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreo C. S., Patrie W. J., McCarty R. E. Effect of ATPase activation and the delta subunit of coupling factor 1 on reconstitution of photophosphorylation. J Biol Chem. 1982 Sep 10;257(17):9968–9975. [PubMed] [Google Scholar]
  2. Andreu J. M., Warth R., Muñoz E. Glycoprotein nature of energy-transducing ATPases. Chemical characterization of glycopeptides isolated from bacterial and chloroplast coupling factors. FEBS Lett. 1978 Feb 1;86(1):1–5. doi: 10.1016/0014-5793(78)80084-2. [DOI] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Binder A., Jagendorf A., Ngo E. Isolation and composition of the subunits of spinach chloroplast coupling factor protein. J Biol Chem. 1978 May 10;253(9):3094–3100. [PubMed] [Google Scholar]
  5. Chu F. K., Trimble R. B., Maley F. The effect of carbohydrate depletion on the properties of yeast external invertase. J Biol Chem. 1978 Dec 25;253(24):8691–8693. [PubMed] [Google Scholar]
  6. Esch F. S., Allison W. S. On the subunit stoichiometry of the F1-ATPase and the sites in it that react specifically with p-fluorosulfonylbenzoyl-5'-adenosine. J Biol Chem. 1979 Nov 10;254(21):10740–10746. [PubMed] [Google Scholar]
  7. Farron F., Racker E. Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase. Biochemistry. 1970 Sep 15;9(19):3829–3836. doi: 10.1021/bi00821a024. [DOI] [PubMed] [Google Scholar]
  8. Hymes A. J., Mullinax G. L., Mullinax F. Immunoglobulin carbohydrate requirement for formation of an IgG-IgG complex. J Biol Chem. 1979 May 10;254(9):3148–3151. [PubMed] [Google Scholar]
  9. Keutmann H. T., McIlroy P. J., Bergert E. R., Ryan R. J. Chemically deglycosylated human chorionic gonadotropin subunits: characterization and biological properties. Biochemistry. 1983 Jun 21;22(13):3067–3072. doi: 10.1021/bi00282a007. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. LeBel D., Poirier G. G., Beaudoin A. R. A convenient method for the ATPase assay. Anal Biochem. 1978 Mar;85(1):86–89. doi: 10.1016/0003-2697(78)90277-4. [DOI] [PubMed] [Google Scholar]
  12. Lim S. H., Salton M. R. F1-ATPase of Micrococcus lysodeikticus is not a glycoprotein. Biochim Biophys Acta. 1981 Dec 14;638(2):275–281. doi: 10.1016/0005-2728(81)90237-1. [DOI] [PubMed] [Google Scholar]
  13. Nalin C. M., Cross R. L., Lucas J. J., Kohlbrenner W. E. Lack of evidence for covalently-bound carbohydrates in energy-transducing ATPases from mitochondria, bacteria, and chloroplasts. FEBS Lett. 1979 Aug 15;104(2):209–214. doi: 10.1016/0014-5793(79)80816-9. [DOI] [PubMed] [Google Scholar]
  14. Ohtsu Y., Tsuchida K., Suzuki Y., Ohnishi T. Effect of concanavalin A on the activity of membrane-bound and detergent-solubilized Mg2+ -ATPase. Biochim Biophys Acta. 1982 Aug 25;690(1):69–73. doi: 10.1016/0005-2736(82)90239-5. [DOI] [PubMed] [Google Scholar]
  15. Penttinen H. K. Determination of inorganic phosphate. A method for the determination of phosphatase activity by a continuous flow system. Anal Biochem. 1980 Mar 1;102(2):353–357. doi: 10.1016/0003-2697(80)90166-9. [DOI] [PubMed] [Google Scholar]
  16. Ryrie I. J., Jagendorf A. T. An energy-linked conformational change in the coupling factor in chloroplasts. Studies with hydrogen exchange. J Biol Chem. 1971 Jun 10;246(11):3771–3774. [PubMed] [Google Scholar]
  17. SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
  18. Sakurai H., Shinohara K., Hisabori T., Shinohara K. Enhancement of adenosine triphosphatase activity of purified chloroplast coupling factor 1 in aqueous organic solvent. J Biochem. 1981 Jul;90(1):95–102. doi: 10.1093/oxfordjournals.jbchem.a133473. [DOI] [PubMed] [Google Scholar]
  19. Satav J. G., Johnston R. F., Monk B., Criddle R. S. Inhibition of yeast mitochondrial ATPase by concanavalin A. Arch Biochem Biophys. 1980 Jan;199(1):110–116. doi: 10.1016/0003-9861(80)90262-3. [DOI] [PubMed] [Google Scholar]
  20. Shavit N. Energy transduction in chloroplasts: structure and function of the ATPase complex. Annu Rev Biochem. 1980;49:111–138. doi: 10.1146/annurev.bi.49.070180.000551. [DOI] [PubMed] [Google Scholar]
  21. Sodetz J. M., Paulson J. C., Pizzo S. V., McKee P. A. Carbohydrate on human factor VIII/von Willebrand factor. Impairment of function by removal of specific galactose residues. J Biol Chem. 1978 Oct 25;253(20):7202–7206. [PubMed] [Google Scholar]
  22. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  23. Trimble R. B., Maley F. The use of endo-beta-N-acetylglucosaminidase H in characterizing the structure and function of glycoproteins. Biochem Biophys Res Commun. 1977 Oct 10;78(3):935–944. doi: 10.1016/0006-291x(77)90512-5. [DOI] [PubMed] [Google Scholar]
  24. Tyler D. D., Webb P. R. Purification and properties of the adenosine triphosphatase released from the liver mitochondrial membrane by chloroform. Biochem J. 1979 Feb 15;178(2):289–297. doi: 10.1042/bj1780289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  26. Wang F. F., Hirs C. H. Influence of the heterosaccharides in porcine pancreatic ribonuclease on the conformation and stability of the protein. J Biol Chem. 1977 Dec 10;252(23):8358–8364. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES