Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2010 Feb 10;25(1):67–73. doi: 10.1007/s12291-010-0014-1

Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe

T A Ajith 1,
PMCID: PMC3453022  PMID: 23105887

Abstract

Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O2) and hydroxyl radical (HO·) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton’s reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H2O2-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

Key Words: Antioxidants, Nutraceutics, Reactive oxygen species, Zingiber officinale

Full Text

The Full Text of this article is available as a PDF (137.5 KB).

References

  • 1.Bloch A., Thomson C.A. Position of the American Diabetic Association: Phytochemicals and functional foods. J Am Diet Ass. 1995;95:493–496. doi: 10.1016/S0002-8223(95)00130-1. [DOI] [PubMed] [Google Scholar]
  • 2.Yamahara J., Mochizuki M., Rong H.Q., Matsuda H., Fujimura H. The anti-ulcer effect in rats of ginger constituents. J Ethnopharmacol. 1988;23:299–304. doi: 10.1016/0378-8741(88)90009-8. [DOI] [PubMed] [Google Scholar]
  • 3.Yamahara J., Rong H.Q., Naitoh Y., Kitani T., Fujimura H. Inhibition of cytotoxic drug-induced vomiting in suncus by a ginger constituent. J Ethnopharmacol. 1989;27:353–355. doi: 10.1016/0378-8741(89)90010-X. [DOI] [PubMed] [Google Scholar]
  • 4.Yamahara J., Huang Q.R., Li Y.H., Xu L., Fujimora H. Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem Pharm Bull (Tokyo) 1990;38:430–431. doi: 10.1248/cpb.38.430. [DOI] [PubMed] [Google Scholar]
  • 5.Phillips S., Hutchinson S., Ruggier R. Zingiber officinale does not affect gastric emptying rate. A randomized, placebo controlled, crossover trial. Anesthesia. 1993;48:393–395. doi: 10.1111/j.1365-2044.1993.tb07011.x. [DOI] [PubMed] [Google Scholar]
  • 6.Sharma S.S., Gupta Y.K. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale) J Ethnopharmacol. 1998;62:49–55. doi: 10.1016/S0378-8741(98)00053-1. [DOI] [PubMed] [Google Scholar]
  • 7.Bliddal H., Rosetzsky A., Schlichting P., Weidner M.S., Andersen L.A., Ibfelt H.H. A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthr Cartilage. 2000;8:9–12. doi: 10.1053/joca.1999.0264. [DOI] [PubMed] [Google Scholar]
  • 8.Kim J.K., Kim Y., Na K.M., Surh Y.J., KTim T.Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radical Res. 2007;41:603–614. doi: 10.1080/10715760701209896. [DOI] [PubMed] [Google Scholar]
  • 9.Cooke M.S., Evans M.D., Dizdraoglu M., Lunec J. Oxidative DNA damage: mechanisms, mutation and disease. FASEB J. 2003;17:1195–1214. doi: 10.1096/fj.02-0752rev. [DOI] [PubMed] [Google Scholar]
  • 10.Vaca C.E., Wilhelm J., Rihsdahi H.M. Interaction of lipid peroxidation product with DNA. A review. Mutat Res Rev Genet Toxicol. 1998;195:137–145. doi: 10.1016/0165-1110(88)90022-x. [DOI] [PubMed] [Google Scholar]
  • 11.Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biol Med. 1991;11:81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  • 12.Cadenas E., Davies K.J.A. Mitochondrial free radical generation, oxidative stress and aging. Free Radical Biol Med. 2000;29:222–230. doi: 10.1016/S0891-5849(00)00317-8. [DOI] [PubMed] [Google Scholar]
  • 13.Humphries K., Yoo Y., Szweda L.I. Inhibition of NADH-linked mitochondrial respiration by 4-hydoxy-2-nonenal. Biochem. 1998;37:552–557. doi: 10.1021/bi971958i. [DOI] [PubMed] [Google Scholar]
  • 14.Feron V.J., Til H.P., Vrijer F., Woutersen R.A., Cassee F.R., Bladeren P.J. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res. 1991;259:363–385. doi: 10.1016/0165-1218(91)90128-9. [DOI] [PubMed] [Google Scholar]
  • 15.Smith M.J., Inserra P.F., Watson R.R., Wise J.A., O’Neill K.L. Supplementation with fruit and vegetable extracts may decrease DNA damage in the peripheral lymphocytes of an elderly population. Nutrition Res. 1999;19:1507–1518. doi: 10.1016/S0271-5317(99)00107-4. [DOI] [Google Scholar]
  • 16.Ajith T.A., Hema U., Aswathi S. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem Toxicol. 2007;45:2267–2272. doi: 10.1016/j.fct.2007.06.001. [DOI] [PubMed] [Google Scholar]
  • 17.Ajith T.A., Nivitha V., Usha S. Zingiber officinale Roscoe alone and in combination with _-tocopherol protect kidney against cisplatin induced acute renal failure. Food Chem Toxicol. 2007;45:921–927. doi: 10.1016/j.fct.2006.11.014. [DOI] [PubMed] [Google Scholar]
  • 18.Ajith T.A., Aswathi S., Hema U. Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity. Food Chem Toxicol. 2008;46:3178–3181. doi: 10.1016/j.fct.2008.07.004. [DOI] [PubMed] [Google Scholar]
  • 19.Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Annal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
  • 20.Ajith T.A., Harikumar K.B., Thasna H., Sabu M.C., Babitha N.V. Proapoptotic and antitumor activities of the HMG-CoA reductase inhibitor, lovastatin, against Dalton’s Lymphoma Ascites tumor in mice. Clin Chim Acta. 2006;366:322–328. doi: 10.1016/j.cca.2005.11.012. [DOI] [PubMed] [Google Scholar]
  • 21.Ajith T.A., Riji T., Anu V. In vitro antioxidant and DNA protective effects of the novel 3-hydroxy-3-methylglutryl coenzyme A reductase inhibitor rosuvastatin. Clin Exp Pharmacol Physiol. 2008;35:625–629. doi: 10.1111/j.1440-1681.2007.04853.x. [DOI] [PubMed] [Google Scholar]
  • 22.Ishikawa Y., Satoh T., Enokido Y., Nishio C., Ikeuchi T., Hatanka H. Generation of reactive oxygen species, release of L-glutamate and activation of caspases are required for oxygen induced apoptosis of embryonic hippocampal neurons in culture. Brain Res. 1999;824:71–80. doi: 10.1016/S0006-8993(99)01108-7. [DOI] [PubMed] [Google Scholar]
  • 23.Buckman T.D., Sitphin M.S., Mitrovic B. Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J Neurochem. 1993;60:2046–2058. doi: 10.1111/j.1471-4159.1993.tb03489.x. [DOI] [PubMed] [Google Scholar]
  • 24.Lenaz G., Bovina C., D’Aurelio M., Fato R., Formiggini G., Geneva M.I., Giulianao G., Merb P.M., Ventura P.B. Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci. 2002;959:199–213. doi: 10.1111/j.1749-6632.2002.tb02094.x. [DOI] [PubMed] [Google Scholar]
  • 25.Liu Y., Fiskum G., Schubert O. Generation of reactive oxygen species by mitochondrial electron transport chain. J Neurochem. 2002;80:780–787. doi: 10.1046/j.0022-3042.2002.00744.x. [DOI] [PubMed] [Google Scholar]
  • 26.Chen Q., Vasquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–36031. doi: 10.1074/jbc.M304854200. [DOI] [PubMed] [Google Scholar]
  • 27.Wei Y.H. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med. 1998;217:53–63. doi: 10.3181/00379727-217-44205. [DOI] [PubMed] [Google Scholar]
  • 28.Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Schnizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: from physiology to disease. Biochim Biophys Acta. 1995;1271:67–74. doi: 10.1016/0925-4439(95)00012-s. [DOI] [PubMed] [Google Scholar]
  • 29.Halliwell R., Aruoma O.I. DNA damage by oxygen-derived species. FEBS Lett. 1991;281:9–19. doi: 10.1016/0014-5793(91)80347-6. [DOI] [PubMed] [Google Scholar]
  • 30.Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem J. 1996;313:17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Imlay J.A., Chin S.M., Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1998;240:640–642. doi: 10.1126/science.2834821. [DOI] [PubMed] [Google Scholar]
  • 32.Powell L.W., Bassett M.L., Halliday J.W. Hemochromatosis. Gastroenterol. 1980;78:374–381. [PubMed] [Google Scholar]
  • 33.Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 2009;100:9–16. doi: 10.1111/j.1349-7006.2008.01001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–1208. doi: 10.2174/0929867053764635. [DOI] [PubMed] [Google Scholar]
  • 35.Kabat G.C., Rohan T.E. Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Cause Control. 2007;18:1047–1053. doi: 10.1007/s10552-007-9058-9. [DOI] [PubMed] [Google Scholar]
  • 36.Hall E.D. Novel inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. Ann Neurol. 1992;32:S137–S142. doi: 10.1002/ana.410320724. [DOI] [PubMed] [Google Scholar]
  • 37.Halliwell B. Oxidants and the central nervous system: Some fundamental questions. Is oxidant damage relevant to Parkinson’s disease,Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand. 1989;80:S23–S33. doi: 10.1111/j.1600-0404.1989.tb01779.x. [DOI] [PubMed] [Google Scholar]
  • 38.Carbonell T., Rama R. Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 2007;14:857–874. doi: 10.2174/092986707780363014. [DOI] [PubMed] [Google Scholar]
  • 39.Langner E., Greifenberg S., Gruenwald J. Ginger: History and use. Adv Ther. 1998;15:25–30. [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES