Abstract
The root of Glycyrrhiza glabra is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. Glycyrrhizinic acid, a major component of licorice, has antiulcer effect by raising the local concentration of prostaglandins that promote mucous secretion and cell proliferation in the stomach. Glycyrrhizin shows hepatoprotective effect by preventing changes in cell membrane permeability, inhibiting phospholipase A2 (PLA2) and increasing survival rate of hepatocytes. Glabridin has effect in melanogenesis and inflammation by inhibiting the tyrosinase activity of melanocytes. α-glycyhrritinic acid exhibits anti-inflammatory activity by inhibiting glucocorticoid metabolism. In present study ethanolic (95%) extract of root of Glycyrrhiza glabra and its fractions were investigated for its antidyslipidaemic activity on HFD induced dyslipidaemic hamsters. Ethanolic extract and its ethyl acetate soluble, water soluble and hexane soluble fractions decreased serum level of total cholesterol by 25.9, 38.0, 39.0 and 26.3%, respectively. On the other hand ethanolic extract, ethyl acetate soluble, water soluble and hexane soluble fraction increased the serum HDL-cholesterol level by 14.8, 34.3, 27.3 and 17.2%, respectively. Ethanolic extract, ethyl acetate fraction, aqueous fraction and hexane fraction decreased triglyceride level by 31.3, 37.2, 41.2 and 28.9%, respectively. The reduction in LDL-cholesterol level by ethanolic extract, ethyl acetate soluble fraction and water soluble fraction were 43.9, 31.0, 33.4 and 24.6%, respectively.
Key Words: Glycyrrhiza glabra, Dyslipidaemia, High fructose diet
Full Text
The Full Text of this article is available as a PDF (85.3 KB).
References
- 1.Chong P.H., Bachenheimer B.S. Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs. 2000;60(1):55–93. doi: 10.2165/00003495-200060010-00005. [DOI] [PubMed] [Google Scholar]
- 2.Havel R., Rapaport E. Management of primary hyperlipidemia. N Engl J Med. 1995;332:1491–1498. doi: 10.1056/NEJM199506013322207. [DOI] [PubMed] [Google Scholar]
- 3.Tiwari A. Natural product antioxidants and their therapeutic potential in mitigating peroxidative modification of lipoproteins and atherosclerosis: recent development. J Med Aroma Plant Sci. 1999;21:730–741. [Google Scholar]
- 4.Singh B., Bhat T.K., Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem. 2003;51(19):5579–5597. doi: 10.1021/jf021150r. [DOI] [PubMed] [Google Scholar]
- 5.Ross I.A. Medicinal plants of the world. Totowa, NJ: Humana Press Inc; 2001. [Google Scholar]
- 6.Vaya J., Belinky P.A., Aviram M. Antioxidant Constituents from Licorice Roots: Isolation, Structure Elucidation and Antioxidative Capacity Toward LDL Oxidation. Free Radical Biol Med. 1997;23(2):302–313. doi: 10.1016/S0891-5849(97)00089-0. [DOI] [PubMed] [Google Scholar]
- 7.Belinky P.A., Aviram M., Fuhrman B., Rosenblat M., Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis. 1998;137(1):49–61. doi: 10.1016/S0021-9150(97)00251-7. [DOI] [PubMed] [Google Scholar]
- 8.Zhan C., Yang J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res. 2006;53(3):303–309. doi: 10.1016/j.phrs.2005.12.008. [DOI] [PubMed] [Google Scholar]
- 9.Sitohy M.Z., el-Massry R.A., el-Saadany S.S., Labib S.M. Metabolic effects of licorice roots (Glycyrrhiza glabra) on lipid distribution pattern, liver and renal functions of albino rats. MS Nahrung. 1991;35(8):799–806. doi: 10.1002/food.19910350803. [DOI] [PubMed] [Google Scholar]
- 10.Wang G.S., Han Z.W. The protective action of glycyrrhiza flavonoids against carbon tetrachloride hepatotoxicity in mice. Yao Xue Xue Bao. 1993;28(8):572–576. [PubMed] [Google Scholar]
- 11.Kiso Y., Tohkin M., Hikino H. Mechanism of antihepatotoxic activity of glycyrhhizin, I: Effect on free radical generation and lipid peroxidation. Planta Medica. 1984;50:298–302. doi: 10.1055/s-2007-969714. [DOI] [PubMed] [Google Scholar]
- 12.Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg Med Chem. 1998;6(3):339–347. doi: 10.1016/S0968-0896(97)10034-7. [DOI] [PubMed] [Google Scholar]
- 13.Krausse R., Bielenberg J., Blaschek W., Ullmann U. In vitro anti-Helicobacter pylori activity of Extractum liquiritiae, glycyrrhizin and its metabolites. J Antimicrob Chemother. 2004;54(1):243–246. doi: 10.1093/jac/dkh287. [DOI] [PubMed] [Google Scholar]
- 14.Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterolin Plasma, Without Use of the Preparative Ultracentrifuge. Clin Chem. 1972;18(6):499–502. [PubMed] [Google Scholar]
- 15.Park O., Cesar D., Faix D., Wu K., Shackleton C., Hellerstein M. Mechanism of fructose-induced hypertriglyceridemia in the rat: Activation of hepatic pyruvate dehydrogenase kinase. Biochem J. 1992;282:753–757. doi: 10.1042/bj2820753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Zavaroni I., Chen Y., Reaven G.M. Studies of the mechanisms of fructose-induce hypertriglyceridemia in the rat. Metabolism. 1982;31:1077–1083. doi: 10.1016/0026-0495(82)90155-X. [DOI] [PubMed] [Google Scholar]
- 17.Kelley G.L., Allan G., Azhar S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinol. 2005;145(2):548–555. doi: 10.1210/en.2003-1167. [DOI] [PubMed] [Google Scholar]
- 18.Tan B.K., Tan C.H., Pushparaj P.N. Anti-diabetic activity of the semipurified fractions of Averrhoa bilimbi in high fat diet fedstreptozotocin induced diabetic rats. Life Sci. 2005;76:2827–2839. doi: 10.1016/j.lfs.2004.10.051. [DOI] [PubMed] [Google Scholar]
- 19.Betteridge J. Lipid disorders in diabetes mellitus. In: Pickup J.C., Williams G., editors. Textbook of Diabetes. second ed. London: Blackwell Science; 1997. [Google Scholar]
- 20.Ghatak A., Asthana O.P. Recent trends in hyperlipoproteinemias and its pharmacotherapy. Ind J Pharmacol. 1995;27:14–29. [Google Scholar]
- 21.Brown G.B., Xue Q., Sacco D.E., Alberts J.J. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation. 1993;87:1781–1791. doi: 10.1161/01.cir.87.6.1781. [DOI] [PubMed] [Google Scholar]
- 22.Visavadiya N.P., Narasimhacharya A.V.R.L. Hypocholesterolaemic and antioxidant effects of Glycyrrhiza glabra (Linn) in rats. Mol Nutr Food Res. 2006;50:1080–1086. doi: 10.1002/mnfr.200600063. [DOI] [PubMed] [Google Scholar]
- 23.Howell T.J., MacDougall D.E., Jones P.J.H. Phytosterols partially explain differences in cholesterol metabolism caused by corn or olive oil feeding. J Lipid Res. 1998;39:892–900. [PubMed] [Google Scholar]
- 24.Ikeda I., Sugano M. Inhibition of cholesterol absorption by plant sterols for mass intervention. Curr Opin Lipidol. 1998;9:527–531. doi: 10.1097/00041433-199812000-00003. [DOI] [PubMed] [Google Scholar]
- 25.Harwood J.H.J., Chandler C.E., Pellarin L.D., Bangerter F.W., Wilkins R.W., Long C.A., et al. Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin betatigogenin cellobioside (CP-88818; tiqueside) J Lipid Res. 1993;34:377–395. [PubMed] [Google Scholar]
- 26.Oakenfull D.G., Sidhu G.S. Could saponins be a useful treatment for hypercholesterolaemia? Eur J Clin Nutr. 1990;44:79–88. [PubMed] [Google Scholar]
- 27.Warnholtz A., Mollnau H., Oelze M., Wendt M., Munzel T. Hypolipidemic and antioxidant activities of Asparagus racemosus in hypercholesteremic rats. Curr Hyperten Reports. 2001;3:53–60. doi: 10.1007/s11906-001-0081-z. [DOI] [PubMed] [Google Scholar]
- 28.Fukushima M., Ohashi T., Fujiwara Y., Sonoyama K., Nakano M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp Biol Med. 2001;226:758–765. doi: 10.1177/153537020222600808. [DOI] [PubMed] [Google Scholar]
- 29.Venkatesan N., Devaraj S.N., Devaraj H. Increased binding of LDL and VLDL to apo B, E receptors of hepatic plasma membrane of rats treated with fibernat. Eur J Nutr. 2003;42:262–271. doi: 10.1007/s00394-003-0420-8. [DOI] [PubMed] [Google Scholar]
- 30.Gotto A.M. Triglyceride: The Forgotten Risk Factor. Circulation. 1998;97:1027–1028. doi: 10.1161/01.cir.97.11.1027. [DOI] [PubMed] [Google Scholar]
- 31.Han L.K., Zheng Y.N., Xu B.J., Okuda H., Kimura Y. Saponins from Platycodi Radix ameliorate high fat diet-induced obesity in mice. J Nutr. 2002;132:2241–2245. doi: 10.1093/jn/132.8.2241. [DOI] [PubMed] [Google Scholar]
- 32.Staels B., Dallongville J., Auwerx J., Schoonjans K., Leitersdorf E. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–2093. doi: 10.1161/01.cir.98.19.2088. [DOI] [PubMed] [Google Scholar]
- 33.Wilson P.W., Abbott R.D., Castelli W.P. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arterioscler Thromb Vasc Biol. 1988;8:737–741. doi: 10.1161/01.atv.8.6.737. [DOI] [PubMed] [Google Scholar]
- 34.Assmann G., Nofer J. Atheroprotective effects of high-density lipoproteins. Annu Rev Med. 2003;54:321–341. doi: 10.1146/annurev.med.54.101601.152409. [DOI] [PubMed] [Google Scholar]
- 35.Moundras C., Behr S.R., Remesy C., Demigne C. Fecal losses of sterols and bile acids induced by feeding rats Guar gum are due to greater pool size and liver bile acid secretion. J Nutr. 1997;127:1068–1076. doi: 10.1093/jn/127.6.1068. [DOI] [PubMed] [Google Scholar]
- 36.Vinson J.A., Hu S.-J., Jung S., Stanski A.M. A citrus extract plus ascorbic acid decreases lipids, lipid peroxides, lipoprotein oxidative susceptibility, and atherosclerosis in hypercholesterolemic hamsters. J Agric Food Chem. 1998;46:1453–1459. doi: 10.1021/jf970801u. [DOI] [Google Scholar]
- 37.Daniel R.S., Devi K.S., Augusti K.T. Mechanism of action of antiatherogenic and related effects of Ficus bengalensis Linn. flavonoids in experimental animals. Ind J Exp Biol. 2003;41:296–303. [PubMed] [Google Scholar]