Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2009 Dec 30;24(4):419–425. doi: 10.1007/s12291-009-0075-1

Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus

Alireza Nakhaee 1, Mohammad Bokaeian 2, Mohsen Saravani 1, Ali Farhangi 3, Azim Akbarzadeh 3,4,
PMCID: PMC3453050  PMID: 23105871

Abstract

In traditional medicine, Eucalyptus globulus (eucalyptus) was used for the treatment of diabetes mellitus. Hyperglycemia in diabetes has been associated with increased formation of reactive oxygen species (ROS) and oxidative damage to tissue compounds. The aim of this study was to evaluate the effects of eucalyptus in the diet (20 g/Kg) and drinking water (2.5 g/L) on lipid peroxidation, protein oxidation and antioxidant power in plasma and liver homogenate, as well as glycated-Hb (HbA1C) of blood in streptozotocin-induced diabetic rats for a period of 4 weeks. Diabetes induced in rats by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/Kg). At the end of the treatment period, the level of plasma glucose, plasma and liver malondialdehyde (MDA, the main product of lipid peroxidation), protein carbonyl (PC, one of the protein oxidation products) and HbA1C increased and ferric reducing antioxidant power (FRAP) decreased in diabetic rats compared to normal rats. Eucalyptus administration for 4 weeks caused a significant decrease in the plasma glucose levels, plasma and liver MDA, PC and HbA1C, also a concomitant increase in the levels of FRAP in diabetic treated rats. In conclusion, the present study showed that eucalyptus posses antioxidant activities. Eucalyptus probably restores antioxidant power, due to the improved hyperglycemia in streptozotocin-induced diabetic rats.

Key Words: Diabetes mellitus, Eucalyptus globulus, Ferric reducing antioxidant power, Malondialdehyde, Protein Carbonyl, Glycated-Hb

Full Text

The Full Text of this article is available as a PDF (375.8 KB).

References

  • 1.The Expert Committee on DiagnosisClassification of Diabetes Mellitus. Report of the expert committee on diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26:S5–S20. doi: 10.2337/diacare.26.11.3160. [DOI] [PubMed] [Google Scholar]
  • 2.Wild S., Roglic K., Green A., Sicree R., King H. Global prevalence of diabetes, Estimation for the year 2003 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 3.Nammi S., Boini M.K., Lodagala D.S., Behara R.B.S. The juice of fresh leaves of Catharanthus rosesus Linn reduces blood glucose in normal and alloxan diabetic rats. BMC Complement Altern Med. 2003;3:1–4. doi: 10.1186/1472-6882-3-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Mohamed A.K., Bierhaus A., Schiekofer S., Tristschler H., Ziegler H., Nawroth P.P. The role of oxidative stress and NF-β activation in late diabetic complication. Biofactors. 1999;10:171–179. doi: 10.1002/biof.5520100211. [DOI] [PubMed] [Google Scholar]
  • 5.Baynes J.W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412. doi: 10.2337/diabetes.40.4.405. [DOI] [PubMed] [Google Scholar]
  • 6.Booth A., Khalifah R., Tood P., Hudson B. Invitro kinetic studies of formation antigenic advanced glycation end product (AGEs): Novel inhibition of post-amadori glycation pathway. J Biol Chem. 1997;272:5430–5437. doi: 10.1074/jbc.272.33.20408. [DOI] [PubMed] [Google Scholar]
  • 7.Vlassara H., Palace M. Diabetes and advanced glycation end products. J Intern Med. 2001;251:87–101. doi: 10.1046/j.1365-2796.2002.00932.x. [DOI] [PubMed] [Google Scholar]
  • 8.Gallou G., Ruelland A., Legras B., Maugendre D., Allannic H., Cloarec L. Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clin Chim Acta. 1993;214:227–234. doi: 10.1016/0009-8981(93)90114-J. [DOI] [PubMed] [Google Scholar]
  • 9.Vandam P.S., Bravenboer B. Oxidative stress and antioxidant treatment in diabetic neuropathy. Neurosci Res Commun. 1997;21:41–48. doi: 10.1002/(SICI)1520-6769(199707)21:1<41::AID-NRC206>3.0.CO;2-J. [DOI] [Google Scholar]
  • 10.Telci A., Cakatay U., Salman S., Satman I., Sivas A. Oxidative protein damage in early stage type 1 diabetic patients. Diabetes Research Clin practice. 2000;50:213–223. doi: 10.1016/S0168-8227(00)00197-2. [DOI] [PubMed] [Google Scholar]
  • 11.Maxwell S.R., Thopson H., Sandler D., Leguen C., Baxter M.A., Thrope G.H., Jones A.F., Barnett A.H. Antioxidant status in patient with uncomplicated insulin-dependent and noninsulin-dependent diabetes mellitus. Eur J Clin Invest. 1997;27:484–490. doi: 10.1046/j.1365-2362.1997.1390687.x. [DOI] [PubMed] [Google Scholar]
  • 12.Santini S.A., Marra G., Giardina B., Cotroneo P., Mordenet A., Martorana G.E., Manto A., Ghirlanda G. Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes. 1997;46:1853–1858. doi: 10.2337/diabetes.46.11.1853. [DOI] [PubMed] [Google Scholar]
  • 13.Grover J.K., Yadav S., Vats V. Medicinal plants of India with antidiabetic potential. J Ethnophamacol. 2002;81:81–100. doi: 10.1016/S0378-8741(02)00059-4. [DOI] [PubMed] [Google Scholar]
  • 14.Yeh G.Y., Eisenberg D.M., Kaptchuk T.J., Philips R.S. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277–1294. doi: 10.2337/diacare.26.4.1277. [DOI] [PubMed] [Google Scholar]
  • 15.Alarcon-Aguilara F.J., Roman-Ramos R., Perez-Gutierrez S. Study of the anti-hyperglycemia effect of plants used as antidiabetics. J Ethnopharmacol. 1998;61:101–110. doi: 10.1016/S0378-8741(98)00020-8. [DOI] [PubMed] [Google Scholar]
  • 16.Chattopadhyay R.R. A Comparative evaluation of some blood glucose lowering agents of plant origin. J Ethnopharmacol. 1999;67:367–372. doi: 10.1016/S0378-8741(99)00095-1. [DOI] [PubMed] [Google Scholar]
  • 17.Gray A.M., Flatt P.R. Antihyperglycemic actions of Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extra-pancreatic effects in mice. J Nutr. 1998;128:2319–2323. doi: 10.1093/jn/128.12.2319. [DOI] [PubMed] [Google Scholar]
  • 18.Swanston-Flatt S.K., Day C., Bailey C.J., Flatt P.R. Traditional plant treatment for diabetes: Studies in normal and streptozotocin diabetic mice. Diabetologia. 1990;33:462–464. doi: 10.1007/BF00405106. [DOI] [PubMed] [Google Scholar]
  • 19.Evans P., Lyras L., Halliwell B. Measurement of protein carbonyls in human brain tissue. Clin Chim Acta. 1982;93:145–156. doi: 10.1016/s0076-6879(99)00122-6. [DOI] [PubMed] [Google Scholar]
  • 20.Bisse E., Abraham E.C. New less temperature-sensitive micro chromatographic method for separation and quantitation of glycosylated hemoglobin using a non cyanide buffer system. J Chromatog. 1985;344:81–91. doi: 10.1016/S0378-4347(00)82009-5. [DOI] [PubMed] [Google Scholar]
  • 21.Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86:271–278. doi: 10.1016/0003-2697(78)90342-1. [DOI] [PubMed] [Google Scholar]
  • 22.Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. [DOI] [PubMed] [Google Scholar]
  • 23.Benzie I.F.F., Strain J.J. The ferric reducing/antioxidant power: Direct measured of the total antioxidant activity of biological fluids and modified version for simulation measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/S0076-6879(99)99005-5. [DOI] [PubMed] [Google Scholar]
  • 24.Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 25.Reznick A.Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363. doi: 10.1016/S0076-6879(94)33041-7. [DOI] [PubMed] [Google Scholar]
  • 26.Szkudelski T. The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol Res. 2001;50:536–546. [PubMed] [Google Scholar]
  • 27.Ozturk Y., Altan V.M., Yildizoglu A. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev. 1996;48:69–112. [PubMed] [Google Scholar]
  • 28.Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–268. doi: 10.2337/diacare.18.2.258. [DOI] [PubMed] [Google Scholar]
  • 29.Singh R., Barden A., Mori T., Bellin L. Advanced glycation endproducts: a review. Diabetologia. 2001;44:129–146. doi: 10.1007/s001250051591. [DOI] [PubMed] [Google Scholar]
  • 30.Paul R., Bailey A. Glycation of collagen: the basis of its central role in the late complications of aging and diabetes. Int J Biochem Cell Biol. 1996;28:1297–1310. doi: 10.1016/S1357-2725(96)00079-9. [DOI] [PubMed] [Google Scholar]
  • 31.Sheela G.L., Augusti K.T. Antidiabetic effect of S-allyl cysteine sulphoxide isolated from garlic Allium sativium. Ind J Exp Biol. 1992;30:523–526. [PubMed] [Google Scholar]
  • 32.Bunn H.G., Gabby K.H., Gallop P.M. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978;200:21–27. doi: 10.1126/science.635569. [DOI] [PubMed] [Google Scholar]
  • 33.Bravi M.R., Armiento A., Laurenti O., Cassano-Faldetta M., Luca O., Morettia A., Mattia G. Insulin decreases intracellular oxidative stress in patient with type 2 diabetes mellitus. Metab Clin Exp. 2006;55:591–696. doi: 10.1016/j.metabol.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 34.Jain S.K., Robert M., John J.H. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes. 1989;38:1539–1543. doi: 10.2337/diabetes.38.12.1539. [DOI] [PubMed] [Google Scholar]
  • 35.Bayanes J.W., Thrope S.R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48:1–9. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  • 36.Levy U., Zaltzber H., Ben-Amotz A., Kanter Y., Aviram M. β-carotene affects antioxidant status in noninsulin-dependent diabetes mellitus. Pathophysiol. 1999;6:157–161. doi: 10.1016/S0928-4680(99)00013-9. [DOI] [Google Scholar]
  • 37.Motilla P., Vargas J.F., Munoz De Agueda M.C., Valdelvira M.E., Cabrera E.S. Oxidative stress in diabetic rats induced by streptozotocin: Preventive effects of melatonin. J Pineal Res. 1998;25:94–100. doi: 10.1111/j.1600-079X.1998.tb00545.x. [DOI] [PubMed] [Google Scholar]
  • 38.Vijayakumar M., Govindrajan R., Rao C.H.C., Shirwaikar A., Mehrota S., Pushpangadan P. Action of Hygrophila auriculata against streptozotocin-induced oxidative stress. J Ethnophamacol. 2006;104:356–361. doi: 10.1016/j.jep.2005.09.030. [DOI] [PubMed] [Google Scholar]
  • 39.Vigo E., Cepeda A., Gualillo O., Perez-Fernandez R. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. J Pharm Pharmacol. 2004;56:257–263. doi: 10.1211/0022357022665. [DOI] [PubMed] [Google Scholar]
  • 40.Yun B.S., Lee I.K., Kim J.P., Chung S.H., Shim G.S., Yoo I.D. Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res. 2000;23:147–150. doi: 10.1007/BF02975503. [DOI] [PubMed] [Google Scholar]
  • 41.Seghrouchi I., Dari J., Bannier E., Riviere J., Calmard P., Garcia I., Orgiazzi J., Revol A. Oxidative stress parameters in type 1, type 2 and insulin-treated type 2 diabetes mellitus; insulin treatment efficacy. Clin Chim Acta. 2002;321:89–96. doi: 10.1016/S0009-8981(02)00099-2. [DOI] [PubMed] [Google Scholar]
  • 42.Cakatay U., Kayali R. The evaluation of altered redox status in plasma and mitochondria of acute and chronic diabetic rats. Clin Biochem. 2006;39:907–912. doi: 10.1016/j.clinbiochem.2006.05.005. [DOI] [PubMed] [Google Scholar]
  • 43.Telci A., Cakatay U., Kayali R., Erdogan C., Orhan Y., Sivas A., Akcay T. Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res. 2000;32:40–43. doi: 10.1055/s-2007-978584. [DOI] [PubMed] [Google Scholar]
  • 44.Dominguez C., Ruiz E., Gussinye M., Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care. 1998;21:1736–1742. doi: 10.2337/diacare.21.10.1736. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES