Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2009 Dec 30;24(4):324–342. doi: 10.1007/s12291-009-0062-6

Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2

P P Singh 1,3,, Farzana Mahadi 1, Ajanta Roy 1, Praveen Sharma 2
PMCID: PMC3453064  PMID: 23105858

Abstract

Diabetes mellitus type-2 (DMT-2) is a hyperglycemic syndrome with several characteristic features. It continues to rise unabatedly in all pockets of the world, parallels with affluence and can be controlled but not cured. It has a definite involvement of genetic component but environmental factors play overwhelmingly dominant role in etiopathogenesis. Insulin resistance (IR) and obesity are singular instigators of DMT-2. The various events cause critical defects in insulin signaling cascade followed by beta-cell dysfunction. Over a period of time, numerous other metabolic aberrations develop, resulting in diabetic complications which could be both vascular (cardiovascular complications, nephropathy, neuropathy, retinopathy and embryopathy) or a-vascular (cataract and glaucoma etc). It has been proposed that all these abnormal events are initiated or activated by a common mechanism of superoxide anion, which is accompanied with generation of a variety of reactive oxygen species (ROS), reactive nitrogen specie (RNS) and resultant heightened oxidative stress (OS). Provoked OS causes IR and altered gene expressions. Hyperglycemia induces OS through multiple routes: a)stimulated polyol pathway where in ≤ 30% glucose can be diverted to sorbitol and fructose, b)increased transcription of genes for proinflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1) c) activation of protein kinase-C (PKC) leading to several molecular changes d)increased synthesis of Advanced Glycation End Products (AGEs) e)changes in a receptor far AGEs and f) autooxidation of glucose with formation of ketoimines and AGEs. All these processes are accompanied with alteration in redox status, ROS, RNS and OS which trigger DMT-2 and its complications. Initial hurriedly planned and executed experimental and clinical studies showed promising results of antioxidant therapies, but recent studies indicate that excess intake/supplement may have adverse outcomes including increased mortality. It is advocated that antioxidants should be given only if preexisting deficiency is present. Selection of antioxidant is another important aspect. Lastly but most importantly the impact of OS is not obligatory but facultative. As such only those diabetic patients will be benefited by antioxidant therapies that have impelling punch of prooxidants.

Key Words: Diabetes mellitus, Hyperglycemia, Free radicals, Antioxidants, Oxidative stress, Insulin

Full Text

The Full Text of this article is available as a PDF (489.9 KB).

Reference

  • 1.International Diabetes Federation. Atlas on Diabetes. Montreal, Canada 2009.
  • 2.Stymvoli M., Goldstecn B., Haeften T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005;365:1333–1345. doi: 10.1016/S0140-6736(05)61032-X. [DOI] [PubMed] [Google Scholar]
  • 3.Fajan S.S., Bell G.I., Polonsky K.S. Molecular mechanisms and clinical pathophysiology of maturity onset disease of the young. New Eng J Med. 2001;345:971–980. doi: 10.1056/NEJMra002168. [DOI] [PubMed] [Google Scholar]
  • 4.Zimmet P., Albert K.G., Shaw J. Global and societal implications in the diabetes epidemic. Nature. 2001;414:782–787. doi: 10.1038/414782a. [DOI] [PubMed] [Google Scholar]
  • 5.Wei M., Gaskill S.P., Haffner S.M., Stern M.P. Effects of diabetes and level of glycemia on all cause and cardiovascular mortality. The San Antonio Study. Diabetes Care. 1998;21:1167–1172. doi: 10.2337/diacare.21.7.1167. [DOI] [PubMed] [Google Scholar]
  • 6.Hannon T.S., Rao G., Arslanian S.A. Childhood obesity and type 2 diabetes. Pediatrics. 2005;17:534–541. doi: 10.1542/peds.2004-2536. [DOI] [PubMed] [Google Scholar]
  • 7.King H., Aubert R.E., Herman W.H. Global burden of diabetes 1995–2025, prevalence, numerical estimates and projections. Diabetes Care. 1998;21:1414–1431. doi: 10.2337/diacare.21.9.1414. [DOI] [PubMed] [Google Scholar]
  • 8.Wild S., Roglic G., Green A., Sicree R., King H. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 9.UK Prospective Diabetes Study Intensive blood glucose control with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6. [DOI] [PubMed] [Google Scholar]
  • 10.Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation, Part 1, diagnosis and classification of diabetes mellitus. Geneva: World Health Organization; 1999. [Google Scholar]
  • 11.Stumvoli M., Tataranni P.A., Stefan N., Vozarova B., Bogardus C. Glucose allostasis. Diabetes. 2003;52:903–909. doi: 10.2337/diabetes.52.4.903. [DOI] [PubMed] [Google Scholar]
  • 12.Dineen S., Gerich J., Rizza R. Carbohydrate metabolism in non-insulin dependent diabetes mellitus. New Eng J Med. 1992;327:707–713. doi: 10.1056/NEJM199209033271007. [DOI] [PubMed] [Google Scholar]
  • 13.Singh S., Farzana M., Singh P.P. Insinuating role of free radicals and placating behaviour of antioxidants in diabetes mellitus. J Physiol. 2009;9:35–38. [Google Scholar]
  • 14.Singh PP, Gupta G, Barjatiya M, Mamtha GP, Adhikari D. Oxidant antioxidant dovetail hypothesis: Let us not sprint before we stand. In Free Radicals and Antioxidants in Health and Disease: Concordance and Discordance. Eds Singh et al 2007; 1–37.
  • 15.Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Joshua T. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. [DOI] [PubMed] [Google Scholar]
  • 16.Aruoma O.I., Neergheen V.S., Bahorun T., Jen L. Free radicals, antioxidants and diabetes mellitus: Embryopathy, retinopathy, nuuropathy, nephropathy and cardiovascular complications. Neuroembryol Aging. 2006;4:117–137. doi: 10.1159/000109344. [DOI] [Google Scholar]
  • 17.Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Oxidative stress and stress activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endo Rev. 2002;23:599–622. doi: 10.1210/er.2001-0039. [DOI] [PubMed] [Google Scholar]
  • 18.Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52:1–8. doi: 10.2337/diabetes.52.1.1. [DOI] [PubMed] [Google Scholar]
  • 19.Baynes J.W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412. doi: 10.2337/diabetes.40.4.405. [DOI] [PubMed] [Google Scholar]
  • 20.Patel C., Ghanin H., Ravishankar S., Sia C.L., Vishwanathan P., Mohanty P., Dandona P. Prolonged reactive oxygen species generation and Nuclear Factor-kB activation after a high-fat, high-carbohydrate meal in obese. J Clin Endocrin Met. 2007;92:4476–4479. doi: 10.1210/jc.2007-0778. [DOI] [PubMed] [Google Scholar]
  • 21.Ferranti S., Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction and metabolic consequences. Clin Chem. 2008;54:945–955. doi: 10.1373/clinchem.2007.100156. [DOI] [PubMed] [Google Scholar]
  • 22.Eizirik D.L., Cardozo A.K., Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29:42–61. doi: 10.1210/er.2007-0015. [DOI] [PubMed] [Google Scholar]
  • 23.Fridlyand L.E., Philipson L.H. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab. 2006;8:136–145. doi: 10.1111/j.1463-1326.2005.00496.x. [DOI] [PubMed] [Google Scholar]
  • 24.Qatanani M., Lazar M.A. Mechanism of obesity associated insulin resistance: Many choices on the menu. Genes Dev. 2007;21:1443–1455. doi: 10.1101/gad.1550907. [DOI] [PubMed] [Google Scholar]
  • 25.Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin dependent diabetes mellitus: Problems and prospects. Endo Rev. 1998;19:477–490. doi: 10.1210/er.19.4.477. [DOI] [PubMed] [Google Scholar]
  • 26.Smith S.R., Bai F., Charbonneau C., Janderova L., Argyropoulos G. A promote genotype and oxidative stress potential link to human insulin resistance. Diabetes. 2003;52:1611–1618. doi: 10.2337/diabetes.52.7.1611. [DOI] [PubMed] [Google Scholar]
  • 27.Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have causal role in multiple forms of insulin resistance. Nature. 2006;440:944–948. doi: 10.1038/nature04634. [DOI] [PubMed] [Google Scholar]
  • 28.Buetler A.E., Janson J., Bonner-Weir S., Ritzol R., Pizza R.A., Butler P.C. Beta cell deficit and increased beta cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–110. doi: 10.2337/diabetes.52.1.102. [DOI] [PubMed] [Google Scholar]
  • 29.Kaneto H., Nakatani Y., Kawamori D., Miyatsuka T., Matsuoka T.A., Matsuchisa M., Yanasaki Y. Role of oxidative stress, endoplasmic reticulum stress and C-Jun N-terminal kinase in pancreatic beta cell dysfunction and insulin resistance. Int J Biochem Cell Biol. 2006;38:782–793. doi: 10.1016/j.biocel.2006.01.004. [DOI] [PubMed] [Google Scholar]
  • 30.Ahmed N. Advanced glycation end products role in pathology of diabetic complications. Diab Res Clin Prac. 2005;67:3–21. doi: 10.1016/j.diabres.2004.09.004. [DOI] [PubMed] [Google Scholar]
  • 31.Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diab Comp. 2001;15:203–210. doi: 10.1016/S1056-8727(01)00143-X. [DOI] [PubMed] [Google Scholar]
  • 32.Rolo A.P., Palmeira C.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212:167–178. doi: 10.1016/j.taap.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 33.Willi C., Bodenmann P., Ghali W.A., Farris P.D., Cornuz J. Active smoking and the risk of type-2 diabetes: A systematic review and meta-analysis. JAMA. 2007;98:654–664. doi: 10.1001/jama.298.22.2654. [DOI] [PubMed] [Google Scholar]
  • 34.Agrawal R. Smoking, oxidative stress and inflammation: Impact on resting energy expenditure in diabetic nephropathy. BMC Nephrology. 2005;6:13–21. doi: 10.1186/1471-2369-6-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Facchini F.S., Hollenbeck C.B., Jeppesen J., Chen Y.D., Reaven G.M. Insulin resistance and cigarette smoking. Lancet. 1992;339:1128–1130. doi: 10.1016/0140-6736(92)90730-Q. [DOI] [PubMed] [Google Scholar]
  • 36.Canoy D., Warenham N., Luben R., Welch A., Bingham S., Day N., Khaw K.T. Cigarette smoking and fat distribution in 21828 British men and women: A population based study. Obs Res. 2005;13:1466–1475. doi: 10.1038/oby.2005.177. [DOI] [PubMed] [Google Scholar]
  • 37.Spector T.D., Blake D.R. Effect of cigarette smoking on Langerhan’s cells. Lancet. 1988;2:1028. doi: 10.1016/S0140-6736(88)90794-5. [DOI] [PubMed] [Google Scholar]
  • 38.Sakuraba H., Mizukami H., Yagihashi N., Wada R., Hanyu C., Yagihashi S. Reduced beta cell mass and expression of oxidative stress-related DNA damage in the islets of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96. doi: 10.1007/s125-002-8248-z. [DOI] [PubMed] [Google Scholar]
  • 39.Maechler P., Jornot I., Wollheim C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274:27905–27914. doi: 10.1074/jbc.274.39.27905. [DOI] [PubMed] [Google Scholar]
  • 40.Wollhein C.B. Beta cell mitochondria in the regulation of insulin secretion: A new culprit in type II diabetes. Diabetologia. 2000;43:265–277. doi: 10.1007/s001250050044. [DOI] [PubMed] [Google Scholar]
  • 41.Robertson R.P., Hamon J., Tran P.O.T., Poit V. Beta cell glucose toxicity, lipotoxicity and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53(SuppI):S119–S124. doi: 10.2337/diabetes.53.2007.S119. [DOI] [PubMed] [Google Scholar]
  • 42.Cerillo A. Cardiovascular effects of acute hyperglycemia: pathophysiological underpinnings. Diab Vasc Dis Res. 2008;5:260–268. doi: 10.3132/dvdr.2008.038. [DOI] [PubMed] [Google Scholar]
  • 43.Li X., Hu J., Zhang R., Sun X., Zhang Q., Guan X., Chen J., Zhu Q., Li S. Urocortin ameliorates diabetic nephropathy in obese db/db mice. PMCID: PMC. 2009;245:1047–1052. doi: 10.1038/bjp.2008.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Joe M.C., Arshag D.M. A rational approach to drug therapy of type 2 diabetes mellitus. Drugs. 2000;60:95–113. doi: 10.2165/00003495-200060010-00006. [DOI] [PubMed] [Google Scholar]
  • 45.Vats R.K., Kumar V., Kothari A., Mittal A., Ramachandran U. Emerging targets for diabetes. Curr Sci. 2005;88:241–248. [Google Scholar]
  • 46.Johnson J.S., Harns A.K., Rychly D.J., Ergel A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical pratice. Card Diabetol. 2005;4:5–11. doi: 10.1186/1475-2840-4-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. doi: 10.1038/414813a. [DOI] [PubMed] [Google Scholar]
  • 48.Halliwell B. Antioxidants and human disease. Nutr Rev. 1997;55:S44–S52. doi: 10.1111/j.1753-4887.1997.tb06100.x. [DOI] [PubMed] [Google Scholar]
  • 49.Halliwell B. Food derived antioxidants: How to evaluate their importance in food and in vivo. In: Cadenas E., Packer L., editors. Handbook of Antioxidants. NY: Eds Marcel Dekker, Inc; 2002. pp. 1–45. [Google Scholar]
  • 50.Valko M., Morris H., Cronin M.T.D. Metals toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–1208. doi: 10.2174/0929867053764635. [DOI] [PubMed] [Google Scholar]
  • 51.D’Autreaux B., Toledano M. ROS as signaling molecules: Mechanisms that generate specificity in ROS homeostasis. Mol Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. [DOI] [PubMed] [Google Scholar]
  • 52.Theopold U. A bad boy comes good. Nature. 2009;461:486–487. doi: 10.1038/461486a. [DOI] [PubMed] [Google Scholar]
  • 53.Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophilla hemaetopoitic progenitors for differentiation. Nature. 2009;461:537–542. doi: 10.1038/nature08313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd Ed Oxford University Press 1999.
  • 55.Singh PP, Pendse AK, Bomb BS, Barjatiya MK, Ghosh R. Free radicals and antioxidants: Sort out facts from fiction (Editorial). In Free Radicals and Antioxidants: Sort Out Facts from Fiction. 1999 P XV–XIX.
  • 56.Ferreira F.M.L., Palmeira C.M., Matos M.J., Seica R., Santos M.S. Decreased susceptibility to lipid peroxidation of Goto-Kakizaki rats: Relationship to mitochondrial antioxidant capacity. Life Sci. 1999;65:1013–1025. doi: 10.1016/S0024-3205(99)00332-X. [DOI] [PubMed] [Google Scholar]
  • 57.Oliveira P.J., Sica R., Santos D.L., Rolo A.P., Sardo V.A., Ferreira F.M.L. Vitamin E or Coenzyme Q10 administrations are not fully advantageous for heart mitochondrial function in diabetic Croto-Kakizaki rats. Mitochondrion. 2004;3:337–345. doi: 10.1016/j.mito.2004.02.005. [DOI] [PubMed] [Google Scholar]
  • 58.Mootha U.K., Lindgren C.M., Errikson K.F., Subramanian A., Sihag S., Lehar J., et al. PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately down regulated in human diabetes. Nat Genet. 2003;34:267–273. doi: 10.1038/ng1180. [DOI] [PubMed] [Google Scholar]
  • 59.Patti M.E., Buttle A.J., Crunkhorn S., Cusi K., Berria R., Kashyap S., et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC-1 and NRF-1. Proc Natl Acad Sci USA. 2003;100:8466–8471. doi: 10.1073/pnas.1032913100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Russel J.W., Golovoy D., Vinicent A.M., Mahendru P., Olzmann J.A., Mentzer A., Fieldman E.L. High glucose induced oxidative stress and mitochondrial dysfunction in neuron. FASEB J. 2002;16:1738–1748. doi: 10.1096/fj.01-1027com. [DOI] [PubMed] [Google Scholar]
  • 61.Russel L.K., Mansfield C.M., Lehman J.J., Kovacs A., Courtois M., Saffitz J.E., et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage dependent manner. Circ Res. 2004;94:525–533. doi: 10.1161/01.RES.0000117088.36577.EB. [DOI] [PubMed] [Google Scholar]
  • 62.Nishikawa T., Edelstein D., Brownlee M. The missing link: A single unifying mechanism for diabetic complications. Kidney Int. 2000;58:S26–S30. doi: 10.1046/j.1523-1755.2000.07705.x. [DOI] [PubMed] [Google Scholar]
  • 63.Chabrashvili T., Tojo A., Onozato M.L., Kitiyakara C., Quinn M.T., Fujita T., et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension. 2002;39:269–274. doi: 10.1161/hy0202.103264. [DOI] [PubMed] [Google Scholar]
  • 64.Touyz R.M., Yao G., Schiffrin E.L. c-Src induces phosphorylation and translocation of p47 phox: Role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Priol. 2003;23:981–987. doi: 10.1161/01.ATV.0000069236.27911.68. [DOI] [PubMed] [Google Scholar]
  • 65.Babior B.M. NADPH oxidase. Curr Opin Immunol. 2004;16:42–47. doi: 10.1016/j.coi.2003.12.001. [DOI] [PubMed] [Google Scholar]
  • 66.Bokoch G.M., Zhao T. Regulation of the phagocyte NADPH oxidase by Ras GTPase. Antioxid Redox Signal. 2006;8:1533–1548. doi: 10.1089/ars.2006.8.1533. [DOI] [PubMed] [Google Scholar]
  • 67.Paravicini T.M., Touyz R.M. NADPH oxidases, reactive oxygen species and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care. 2008;31:S170–S180. doi: 10.2337/dc08-s247. [DOI] [PubMed] [Google Scholar]
  • 68.Li J.M., Shah A.M. Intracellular localization and preassembly of NADPH oxidase complex endothelial cells. J Biol Chem. 2002;277:19952–19990. doi: 10.1074/jbc.M110073200. [DOI] [PubMed] [Google Scholar]
  • 69.San Martin A.S., Du P., Dikalova A., Lassegue B., Aleman M., Gongora M.C., et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in type 2 diabetes. Am J Physiol Heart Cir Physiol. 2007;292:H2073–H2082. doi: 10.1152/ajpheart.00943.2006. [DOI] [PubMed] [Google Scholar]
  • 70.Touyz R.M., Chen X., Tabet F., Yao G., He G., Quinn M.T., et al. Expression of a functionally active gp91 phox-containing neutrophil type NADPH oxidase in smooth muscle cells from human resistance arteries: Regulation by angiotensin II. Circ Res. 2002;90:1205–1213. doi: 10.1161/01.RES.0000020404.01971.2F. [DOI] [PubMed] [Google Scholar]
  • 71.Laisague B., Clempus R.E. Vascular NADPH oxidases specific features, expression and regulation. Am J Physiol Reg Integ Comp Physiol. 2003;285:R277–R297. doi: 10.1152/ajpregu.00758.2002. [DOI] [PubMed] [Google Scholar]
  • 72.Miller A.A., Drummond G.R., Sobey C.G. Novel isoforms of NADPH oxidase in cerebral vascular control. Pharmacol Ther. 2006;111:928–948. doi: 10.1016/j.pharmthera.2006.02.005. [DOI] [PubMed] [Google Scholar]
  • 73.Spinetti G., Kraenkel N., Emanuuel C., Madeddu P. Diabetes and vessel wall remodelling: From mechanistic insights to regenerative therapies. Cardiovas Res. 2008;78:265–273. doi: 10.1093/cvr/cvn039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Butler R., Morris A.D., Belch J.J.F., Hill A., Struthers A.D. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35:746–751. doi: 10.1161/01.hyp.35.3.746. [DOI] [PubMed] [Google Scholar]
  • 75.Yanaoka T., Nishimura C., Yanashita K., Itakura M., Yamada T., Fujimoto J., et al. Acute onset of diabetic pathological changes in transgenic mice with human aldolase reductase cDNA. Diabetologia. 1995;38:255–261. doi: 10.1007/BF00400627. [DOI] [PubMed] [Google Scholar]
  • 76.Lee A.Y., Chung S.K., Chung S.S. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldolase reductase gene in the lens. Proc Natl Acad Sci USA. 1995;92:2780–2784. doi: 10.1073/pnas.92.7.2780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Yagihashi S., Yamagishi S., Wada R., Suginoto K., Baba M., Wong H.G., et al. Galactosemic neuropathy in transgenic mice for human aldolase reductase. Diabetes. 1996;45:56–59. doi: 10.2337/diabetes.45.1.56. [DOI] [PubMed] [Google Scholar]
  • 78.Lee A.Y., Chung S.S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999;13:23–30. doi: 10.1096/fasebj.13.1.23. [DOI] [PubMed] [Google Scholar]
  • 79.Schleicher E., Friess U. Oxidative stress Age and atherosclerosis. Kidney International. 2007;72:S17–S26. doi: 10.1038/sj.ki.5002382. [DOI] [PubMed] [Google Scholar]
  • 80.Mclain D.A. Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications. 2002;16:72–80. doi: 10.1016/S1056-8727(01)00188-X. [DOI] [PubMed] [Google Scholar]
  • 81.Veerababu G., Tang J., Hoffman R.T., Daniels M.C., Herbert L.F., Jr, Cook E.D., et al. Overexpression of glutamic: fructose 6 phosphate aminotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity and impaired glucose tolerance. Diabetes. 2000;49:2070–2078. doi: 10.2337/diabetes.49.12.2070. [DOI] [PubMed] [Google Scholar]
  • 82.Schleicher E.D., Weigert C. Role of hexosamine biosynthetic pathway in diabetic nephropathy. Kidney International. 2000;58(Suppl77):S13–S18. doi: 10.1046/j.1523-1755.2000.07703.x. [DOI] [PubMed] [Google Scholar]
  • 83.Wolff S.P., Dean R.T. Glucose autooxidation and protein modification: The potential role of “autooxidative glycosylation: in diabetes mellitus. Biochem J. 1987;245:243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Hunt J.V., Bottons M.A., Mitchinson M.J. Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Biochem J. 1993;291:529–535. doi: 10.1042/bj2910529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Hammes H.P., Weiss A., Hess S., Arak N., Horiuchi S., Brownlee M., et al. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab Invest. 1996;75:325–338. [PubMed] [Google Scholar]
  • 86.Howard E.W., Benton R., Aheru-Moore J., Tomasek J.J. Cellular contraction of collagen lattices is inhibited by non-enzymatic glycation. Exp Cell Res. 1996;228:132–137. doi: 10.1006/excr.1996.0308. [DOI] [PubMed] [Google Scholar]
  • 87.Newby A.C. Matrix metalloproteinases regulate migration, proliferation and death of vascular smooth muscle cells by degrading matrix and non-matrix substances. Cardiovasc Res. 2006;69:614–624. doi: 10.1016/j.cardiores.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 88.Goldlin A., Beckman J.A., Schimidt A.M., Creager M.A. Advanced glycation and products: Sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605. doi: 10.1161/CIRCULATIONAHA.106.621854. [DOI] [PubMed] [Google Scholar]
  • 89.Yan S., Schimidt A.M., Anderson G.M., Zhang J., Brett J., Zou Y.S., et al. Enhanced cellular oxidative stress by interaction of advanced glycation end products with their receptors/ binding proteins. J Biol Chem. 1994;269:9889–9897. [PubMed] [Google Scholar]
  • 90.Bergendi L., Benes L., Durackova Z., Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65:1865–1874. doi: 10.1016/S0024-3205(99)00439-7. [DOI] [PubMed] [Google Scholar]
  • 91.Rubbo H, Radi R. Antioxidant properties of nitric oxide. In Handbook of Antioxidants. Cadenas E, Packer L. Ed. Marcel Dekker Inc NY, 2002; 689–706.
  • 92.Ghafourifar p., Cadenas E. Mitochondrial nitric oxide synthase. Trend Pharmacol Sci. 2005;26:190–195. doi: 10.1016/j.tips.2005.02.005. [DOI] [PubMed] [Google Scholar]
  • 93.Koshland D.E. The molecule of the year. Science. 1992;258:1861. doi: 10.1126/science.1470903. [DOI] [PubMed] [Google Scholar]
  • 94.Sessa W.C. Regulation of endothelial derived nitric oxide in health and disease. Men Inst Oswardo Cruz. 2005;100:15–18. doi: 10.1590/s0074-02762005000900004. [DOI] [PubMed] [Google Scholar]
  • 95.Tinahone F.J., Murri-Pierri M., Garrido-Sanchez L., Garca-Almeida J.M., Garcia-Serrano S., Garcia-Ames J., Garcia-Fuentes E. Oxidative stress in severely obese person is greater in those with insulin resistance. Obesity. 2009;17:240–246. doi: 10.1038/oby.2008.536. [DOI] [PubMed] [Google Scholar]
  • 96.Katakan P.V., Domoki F., Snipes J.A., Busija A.R., Jarajapu Y.P., Bushija D.W. Impaired mitochondria dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2009;296:R289–R298. doi: 10.1152/ajpregu.90656.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Nathan C. Epidemic inflammation: Pondoring obesity. Molecular Med. 2009;14:485–492. doi: 10.2119/2008-00038.Nathan. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Pandey V. Think you are slim? New norms may make you obese DNA, 2008. www.dnaindia.com
  • 99.Ogden C.L., Caroll M.D., Curtin L.R., McDowell M.A., Tabak C.J., Flegel K.M. Prevalence of overweight and obesity in United States 1999–2006. JAMA. 2006;295:1594–1605. doi: 10.1001/jama.295.13.1549. [DOI] [PubMed] [Google Scholar]
  • 100.Wells G.D., Noseworthing M.D., Hamilton J., Tarnopolska M., Teir I. Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. Con J News Sci. 2008;35:31–40. doi: 10.1017/s0317167100007538. [DOI] [PubMed] [Google Scholar]
  • 101.Farooqui I.S., O’Rahilly S. Genetics of obesity in humans. End Rev. 2006;27:710–718. doi: 10.1210/er.2006-0040. [DOI] [PubMed] [Google Scholar]
  • 102.Foster-Schubert K.E., Cummings D.E. Emerging therapeutic strategies for obesity. Endo Rev. 2006;27:779–793. doi: 10.1210/er.2006-0041. [DOI] [PubMed] [Google Scholar]
  • 103.Chaturvedi N. The burden of diabetes and its complications: Trends and implications for intervention. Diabetes Res Clin Prac. 2007;76:S3–S12. doi: 10.1016/j.diabres.2007.01.019. [DOI] [PubMed] [Google Scholar]
  • 104.Southern P.A. Free radical in medicine. Involvement in human diseases. Mayo Clin Proc. 1988;63:390–408. doi: 10.1016/s0025-6196(12)64862-9. [DOI] [PubMed] [Google Scholar]
  • 105.Halliwell B., Cross C.E., Gutteridge J.M.C. Free radicals, antioxidants and human disease: Where are we now? J Lab Clin Med. 1992;119:598–620. [PubMed] [Google Scholar]
  • 106.Davi G., Falco A., Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Sig. 2005;7:256–268. doi: 10.1089/ars.2005.7.256. [DOI] [PubMed] [Google Scholar]
  • 107.Roberts C.K., Sindhu K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009;17:460–466. doi: 10.1016/j.lfs.2009.02.026. [DOI] [PubMed] [Google Scholar]
  • 108.Piper G.M., Gross G.J. Oxygen free radicals abolish endothelium dependent relaxation in diabetic rat aorta. Am J Physiol. 1998;255:H825–H833. doi: 10.1152/ajpheart.1988.255.4.H825. [DOI] [PubMed] [Google Scholar]
  • 109.Gutteridge JMC, Halliwell B. Antioxidants: Elixirs of life or media hype? In-Antioxidants in Nutrition, Health and Disease. Oxford Univ Press NY 1996; 40–62.
  • 110.Cadenas E, Packer L. Hand book of Antioxidants Marcel Dekker Inc NY 2002.
  • 111.Singh PP, Gupta S. Antioxidants and cardiovascular system. In Free Radicals and Antioxidants in health and disease: Concordance and Discordance. Singh PP, Gupta G, Barjatia M, Mamtha GP, Adhikari D. Eds. Chowdhary Offset Pvt Ltd Udaipur, 2007.
  • 112.Tewari A.K. Antioxidants: New generation therapeutic base for treatment of polygenic disorders. Curr Sci. 2004;86:192–212. [Google Scholar]
  • 113.Diplock A.T. Antioxidant nutrients and disease prevention: An overview. Am J Clin Nutr. 1991;53:S189–S193. doi: 10.1093/ajcn/53.1.189Sb. [DOI] [PubMed] [Google Scholar]
  • 114.Daga M.K., Mohan A. Antioxidants and disease-current status. J Assoc Phys Ind. 1996;44:703–714. [PubMed] [Google Scholar]
  • 115.Pryor W.A. Vitamin E and heart disease: Basic science to clinical intervention trials. Free Radic Biol Med. 2000;28:141–164. doi: 10.1016/S0891-5849(99)00224-5. [DOI] [PubMed] [Google Scholar]
  • 116.Frei B., England L., Ames B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1989;86:6377–6381. doi: 10.1073/pnas.86.16.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Franzini L., Ardigo D., Zavaroni I. Dietary antioxidants and glucose metabolism. Curr Opinion Clin Nutr Met Care. 2008;11:471–476. doi: 10.1097/MCO.0b013e328303be79. [DOI] [PubMed] [Google Scholar]
  • 118.Blomhoff R. Dietary antioxidants and cardiovascular disease. Curr Opinion Lipidology. 2005;16:47–54. doi: 10.1097/00041433-200502000-00009. [DOI] [PubMed] [Google Scholar]
  • 119.Miller E.R., 3rd, Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-analysis: High dosage vitamin E supplementation may increase all cause mortality. Ann Intern Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. [DOI] [PubMed] [Google Scholar]
  • 120.Bjelakovic G., Nikolova D., Gludd L.L., Smonetti R.G., Gludd C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta — analysis. JAMA. 2007;297:842–857. doi: 10.1001/jama.297.8.842. [DOI] [PubMed] [Google Scholar]
  • 121.Lin J., Cook N.R., Albert C., Zaharris E., Gaziano J.M., Denberg M.V., et al. Vitamin C and E and beta carotene: Supplementation and cancer risk: Arandomized controlled trial. J Natl Cancer Inst. 2009;101:14–23. doi: 10.1093/jnci/djn438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Liu S., Lee I.M., Song Y., Denberg M.V., Cook N.R., Manson J.E. Vitamin E and risk of type 2 diabetes in women health study randomized controlled trial. Diabetes. 2006;55:2856–2862. doi: 10.2337/db06-0456. [DOI] [PubMed] [Google Scholar]
  • 123.Clarke M.W., Burnett J.R. Vitamin E in human health and disease. Crit Rev Clin Lab Sci. 2008;45:417–450. doi: 10.1080/10408360802118625. [DOI] [PubMed] [Google Scholar]
  • 124.Bielakovic G, Nikolova D, Sinonetti RG, Gludd C. Antioxidant supplements for preventing cancers. The Cochrane Collaboration John Wiley & Sons Ltd USA 2008; 1–79.
  • 125.Dotan Y., Pinchuk I., Litchenberg D., Leshno M. Decision analysis supports the paradigm that indiscriminate supplementation of Vitamin E does more harm than good. Arterioscle Thromb Vasc Biol. 2009;29:1304–1309. doi: 10.1161/ATVBAHA.108.178699. [DOI] [PubMed] [Google Scholar]
  • 126.Montenen J., Knekt P., Jarvinen R., Reunanen A. Dietary antioxidants and risk of type 2 diabetes. Diabetes Care. 2004;27:362–366. doi: 10.2337/diacare.27.2.362. [DOI] [PubMed] [Google Scholar]
  • 127.Reunannen A., Knekt P., Aaran R.K., Aromaa A. Serum antioxidant and risk of non-insulin dependent diabetes mellitus. Eur J Clin Nutr. 1998;52:89–93. doi: 10.1038/sj.ejcn.1600519. [DOI] [PubMed] [Google Scholar]
  • 128.Beckman J.A., Goldfine A.B., Gordon M.B., Garret L.A., Kenny J.F., Jr, Cremager M.A. Oral antioxidant therapy improves endothelial function in type 1 but not in type 2 diabetes mellitus. Am J Physiol. 2003;285:H2392–H2398. doi: 10.1152/ajpheart.00403.2003. [DOI] [PubMed] [Google Scholar]
  • 129.Gaede P., Vedel P., Larsen N., Jensen G.V.H., Parving H.H., Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Eng J Med. 2003;348:383–393. doi: 10.1056/NEJMoa021778. [DOI] [PubMed] [Google Scholar]
  • 130.Yusuf S., Dagenairs G., Pogue J., Bosch J., Sleight P. Vitamin E supplementation and cardiovascular events in high risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. New Eng J Med. 2000;342:154–160. doi: 10.1056/NEJM200001203420302. [DOI] [PubMed] [Google Scholar]
  • 131.Bjelakonc G., Nikolova D., Gludd L.L., Simonetti R.G., Gludd C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and metaanalysis. JAMA. 2007;297:842–857. doi: 10.1001/jama.297.8.842. [DOI] [PubMed] [Google Scholar]
  • 132.Holmes V.A., McCame D.R. Could antioxidant supplementation prevent pre-eclampsia? Proc Nutr Soc. 2005;64:491–501. doi: 10.1079/PNS2005469. [DOI] [PubMed] [Google Scholar]
  • 133.Poston L., Briley A.L., Seed P.T., Kelly F.J., Snennan A.H. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): Randomized placebo controlled trial. Lancet. 2006;367:1145–1154. doi: 10.1016/S0140-6736(06)68433-X. [DOI] [PubMed] [Google Scholar]
  • 134.Pocobelli G., Peters U., Kristal A.R., White E. Use of supplements of multivitamins, vitamin C and vitamin E in relation to mortality. Am J Epidemiol. 2009;170:472–483. doi: 10.1093/aje/kwp167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Singh P.P., Sharma P. Antioxidant basket: Do not mix apples and oranges. Ind J Clin Biochem. 2009;24:211–214. doi: 10.1007/s12291-009-0040-z. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES