Abstract
Alloxan administration in male Swiss albino mice, induced diabetes by increasing blood glucose concentration and reducing hepatic glycogen content as compared to normal control group. Besides, serum lipid profile parameters such as total-cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein-cholesterol were also elevated, whereas, the level of high-density lipoprotein-cholesterol was reduced significantly (P<0.05) in diabetic mice. Treatment of diabetic animals with crude ethanolic extract of bark of Prosopis cineraria (P. cineraria) for 45 days, significantly lowered blood glucose level, elevated hepatic glycogen content and maintained body weight and lipid-profile parameters towards near normal range. Declined activity of antioxidant enzymes and concentration of non-enzymatic antioxidants were also normalized by drug treatment, thereby reducing the oxidative damage in the tissues of diabetic animals and hence indicating the anti-diabetic and antioxidant efficacy of the extract.
Key Words: Prosopis cineraria bark, Diabetes mellitus, Oxidative stress, Antidiabetic, Antioxidant
Full Text
The Full Text of this article is available as a PDF (94.0 KB).
References
- 1.Sharma A.K. In: Diabetes mellitus and its complications: An update. 1ed. Sharma A.K., editor. New Delhi: Macmillan India Ltd; 1993. pp. 92–205. [Google Scholar]
- 2.Maritim A.C., Sanders R.A., Watkins J.B., III Diabetes, oxidative stress and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24–38. doi: 10.1002/jbt.10058. [DOI] [PubMed] [Google Scholar]
- 3.Naggar E.M.B., Bartosikova L., Zemlicka M., Svajdlenka E., Rabiskova M., Strnadova V., et al. Antidiabetic effect of Cleome droserifolia aerial parts: Lipid peroxidation-induced oxidative stress in diabetic rats. Acta Vet Brno. 2005;74:347–352. [Google Scholar]
- 4.Murthy P.S. Medicinal plants in diabetes treatment. Ind J Clin Biochem. 1995;10:52–53. doi: 10.1007/BF02871000. [DOI] [Google Scholar]
- 5.Ivorra M.D., Paya M., Villar A. A review of natural products and plants as potential antidiabetic drugs. J Ethnopharmacol. 1989;27:243–275. doi: 10.1016/0378-8741(89)90001-9. [DOI] [PubMed] [Google Scholar]
- 6.Burkart A. A monograph of genus Prosopis (Leguminous) J Ar Arb. 1976;57:219–249. [Google Scholar]
- 7.Firewood crops. Shrub and tree species for energy production. Washington D C: National Academy of Sciences; 1980. [Google Scholar]
- 8.ICFRE, (Indian Council of Forestry Research and Education), Khejri (Prosopis cineraria) ICFRE, Dehradun, India, 1993
- 9.Shalini. Vedic Leguminous Plants, (Shalini ed) 1997: pp57–58.
- 10.Toky OP. Medicinal values of Prosopis cineraria in arid and semiarid India. Society of chemical industry, I, 1999.
- 11.Purohit S.D., Ramawat K.G., Arya H.C. Phenolics, peroxidase and phenolase as related to gall formation in some arid zone plants. Curr Sci. 1979;48:714–716. [Google Scholar]
- 12.Rhoades DF. Herbivores, their interaction with secondary plant metabolites. Acad Press Inc London 1979: pp 3–54.
- 13.Aruna R.V., Ramesh B., Kartha V.N. Effect of beta-carotene on protein glycosylation in alloxan induced diabetic rats. Ind J Exp Biol. 1999;37:399–401. [PubMed] [Google Scholar]
- 14.Henry J. Clinical diagnosis and management by laboratory methods. 17ed. Saunders WB, 1984: 1433pp.
- 15.Kadnur S.V., Goyal R.K. Comparative antidiabetic activity of Methanolic extract and Ethyl Acetate extract of Zingiber officinale Roscoe. Ind J Pharm Sci. 2005;67:453–457. [Google Scholar]
- 16.Nagappa A.N., Thakurdesai P.A., Venkat Rao N., Singh J. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol. 2003;88:45–50. doi: 10.1016/S0378-8741(03)00208-3. [DOI] [PubMed] [Google Scholar]
- 17.Jayaraman J. Laboratory Manual in Biochemistry. New Age International, New Delhi: 1981: pp53, 154–55.
- 18.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 19.Kakkar P., Das B., Viswanathan P.N. A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys. 1984;21:130–132. [PubMed] [Google Scholar]
- 20.Sinha A.K. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7. [DOI] [PubMed] [Google Scholar]
- 21.Rotruck J.T., Pope A.L., Ganther H.F., Swanson A.B. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
- 22.Ellman G.C. Tissue sulfhydril groups. Arch Biochem Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- 23.Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
- 24.Guyton A.C., Hall J.E. Textbook of medical physiology. 10 ed. Philadelphia: Saunders WB; 2000. pp. 810–818. [Google Scholar]
- 25.Harrison TR. Principles of Internal Medicine, 15ed. McGrawHill, 2001: pp2109–2137.
- 26.Gerich J.E. Oral hypoglycemic agents. New Eng J Med. 1989;321:1231–1245. doi: 10.1056/NEJM198911023211805. [DOI] [PubMed] [Google Scholar]
- 27.Abdel-Moneim A., El-Feki M., Salh E. Effect of Nigella sativa, fish oil and glicazide on alloxan diabetic rats. 1- Biochemical and Histopathological studies. J Egyp Ger Soc Zoo. 1997;23:237–265. [Google Scholar]
- 28.Annamala P.T., Augusti K.T. Studies on the biochemical effect of glibenclamide on alloxan diabetic rabbit. Experientia. 1980;36:383–384. doi: 10.1007/BF01975099. [DOI] [PubMed] [Google Scholar]
- 29.El-Shenawy N.S., Abdel-Nabi I.M. Hypoglycemic effect of Cleome droserifolia ethanolic leaf extract in experimental diabetes, and on non-enzymatic antioxidant, glycogen, thyroid hormone and insulin levels. Diabetologia Croatica. 2006;35:15–22. [Google Scholar]
- 30.Osinubi A.A., Ajayi O.G., Adesiyun A.E. Evaluation of the anti-diabetic effect of aqueous leaf extract of Tapianthus butungii in male Sprague-dawley rats. Endocrinol. 2006;16:41–47. doi: 10.1097/01.ten.0000194250.94931.d0. [DOI] [Google Scholar]
- 31.Itamar R, Jay SS, Eleazar S. Diabetes: From research to diagnosis and treatment. Martin Dunitz UK 2003: pp81–139.
- 32.Mooradian A.D. Dyslipidemia in type 2 diabetes mellitus. Nature Clin Pract Endocrinol & Metab. 2009;5:150–159. doi: 10.1038/ncpendmet1066. [DOI] [PubMed] [Google Scholar]
- 33.Shih K.C., Kwak C.F., Hwa C.M. Acipimox attenuates hypertriglyceredemia in dyslipidemic non-insulin dependent diabetes mellitus patients without perturbation of insulin sensitivity and glycemic control. Ind J Clin Biochem. 1997;36:113–119. doi: 10.1016/s0168-8227(97)00039-9. [DOI] [PubMed] [Google Scholar]
- 34.Solano D.P.M., Goldberg R.B. Management of diabetic dyslipidemia. Endocrinol Metab Clin North Am. 2005;34:1–25. doi: 10.1016/j.ecl.2005.01.001. [DOI] [PubMed] [Google Scholar]
- 35.Chahil T.J., Ginsberg H.N. Diabetic dyslipidemia. Metab Clin North Am. 2006;35:491–510. doi: 10.1016/j.ecl.2006.06.002. [DOI] [PubMed] [Google Scholar]
- 36.Frayn K.N. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc. 2001;60:375–380. doi: 10.1079/PNS200195. [DOI] [PubMed] [Google Scholar]
- 37.Mooradian A.D., Haas M.J., Wehmeier K.R., Wong N.C. Obesity-related changes in high density lipoprotein metabolism. Obesity. 2008;16:1152–1160. doi: 10.1038/oby.2008.202. [DOI] [PubMed] [Google Scholar]
- 38.Howard B.V. Lipoprotein metabolism in diabetes mellitus. J Lipid Res. 1987;28:613–628. [PubMed] [Google Scholar]
- 39.Abdollahi M., Salehnia A., Mortazavi S.H.R., Ebrahimi M., Shafiee A., Fouladian F., et al. Antioxidant, antidiabetic, antihyperlipidemic, reproduction stimulatory properties and safety of essential oil of Satureja khuzestanica in rat in vivo: a toxicopharmacological study. Med Sci Monit. 2003;9:331–335. [PubMed] [Google Scholar]
- 40.Vincent M.A., Brownlee M., Russell J.W. Oxidative stress and programmed cell death in diabetic neuropathy. Ann New York Acad Sci. 2002;959:368–383. doi: 10.1111/j.1749-6632.2002.tb02108.x. [DOI] [PubMed] [Google Scholar]
- 41.Haenen G., Vermculen N., Tiimmerman H., Best A. Effect of thiols on lipid peroxidation in rat liver microsomes. Chem Biol Interact. 1989;31:207–212. doi: 10.1016/0009-2797(89)90035-5. [DOI] [PubMed] [Google Scholar]
- 42.Soon Y.Y., Tan B.K.H. Evaluation of the hypoglycemic and antioxidant activities of Morida officinalis in streptozotocin-induced diabetic rats. Singapore Med J. 2000;43:77–85. [PubMed] [Google Scholar]
- 43.Ihm S.H., Yoo H.J., Park S.W., Ihm J.H. Effect of aminoguanidine on lipid peroxidation in streptozotocin-induced diabetic rats. Metabolism. 1999;48:1141–1145. doi: 10.1016/S0026-0495(99)90128-2. [DOI] [PubMed] [Google Scholar]
- 44.Loven D., Schedl H., Wilson H., Daabees T.T., Stegink L.D., Diekus M., et al. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin induced diabetes. Diabetes. 1986;35:503–507. doi: 10.2337/diabetes.35.5.503. [DOI] [PubMed] [Google Scholar]
- 45.Satheesh M.A., Pari L. Antioxidant effect of Boehavia diffusa L. in tissues of alloxan-induced diabetic rats. Ind J Exp Biol. 2004;42:982–992. [PubMed] [Google Scholar]
- 46.McCord J.M., Fridovich I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein) J Biol Chem. 1969;224:6049–6055. [PubMed] [Google Scholar]
- 47.Chance B., Sies H., Broveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- 48.Shin A.H., Oh C.J., Park J.W. Glycation-induced inactivation of antioxidant enzymes and modulation of cellular redox status in lens cells. Arch Pharm Res. 2006;29:577–581. doi: 10.1007/BF02969268. [DOI] [PubMed] [Google Scholar]
- 49.Wolff S.P., Dean R.T. Glucose autoxidation and protein modification: the potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J. 1987;245:243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Arai K., Maguchi S., Fujji S., Ishibashi H., Oikawa K., Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase: identification of the in vitro glycated sites. J Biol Chem. 1987;262:16969–16972. [PubMed] [Google Scholar]
- 51.Yan H., Harding J.J. Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J. 1997;328:599–605. doi: 10.1042/bj3280599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Hussain H.E.M.A. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa, Linn, and partially purified product from Abroma augusta, Linn. in stptozotocin induced diabetes. Ind J Clin Biochem. 2002;17:33–43. doi: 10.1007/BF02867969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Chopra RN, Chopra IC, Handa KL, Kapur LD. Medicinal plants in diabetes. In: Gupta P (ed) Indegenous Drugs of India. 2ed, 1958: pp314–319.
- 54.Noyan T., Onem O., Sekeroglu M.R., Koseoglu B., Dulger H., Bayram I., et al. Effects of erythropoietin and pentoxyfyline on the oxidant and antioxidant systems in the experimental short bowel syndrome. Cell Biochem Func. 2003;21:49–54. doi: 10.1002/cbf.991. [DOI] [PubMed] [Google Scholar]
- 55.Sharma N., Garg V. Antidiabetic and antioxidant potential of ethanolic extract of Butea monosperma leaves in alloxan-induced diabetic mice. Ind J Biochem Biophys. 2009;46:99–105. [PubMed] [Google Scholar]
- 56.Ojewole J.A.O. Antinociceptive, anti-imflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol. 2005;99:13–19. doi: 10.1016/j.jep.2005.01.025. [DOI] [PubMed] [Google Scholar]