Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2010 May 27;25(2):111–118. doi: 10.1007/s12291-010-0022-1

Endoplasmic reticulum stress in diabetes: New insights of clinical relevance

Muthuswamy Balasubramanyam 1,, Raji Lenin 1, Finny Monickaraj 1
PMCID: PMC3453102  PMID: 23105896

Abstract

The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. Accumulating evidence suggests that ER stress plays a role in the pathogenesis of diabetes, contributing to pancreatic β-cell loss and insulin resistance. ER stress may also link obesity, inflammation and insulin resistance in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response in diabetes and its complications. Special attention was given to elucidate how ER stress could explain some of the ‘clinical paradoxes’ such as secondary sulfonylurea failure, initial worsening of retinopathy during tight glycemic control, insulin resistance induced by protease inhibitors and other clinically relevant observations.

Key Words: ER stress, UPR, diabetes, glucolipotoxicity, autophagy, glycemic variability

Full Text

The Full Text of this article is available as a PDF (301.3 KB).

References

  • 1.Anelli T., Sitia R. Protein quality control in the early secretory pathway. EMBO J. 2008;27:315–327. doi: 10.1038/sj.emboj.7601974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Schroder M., Kaufman R.J. ER stress and the unfolded protein response. Mutat Res. 2005;569:29–63. doi: 10.1016/j.mrfmmm.2004.06.056. [DOI] [PubMed] [Google Scholar]
  • 3.Gething M.J., Sambrook J. Protein folding in the cell. Nature. 1992;355:33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  • 4.Kaufman R.J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211–1233. doi: 10.1101/gad.13.10.1211. [DOI] [PubMed] [Google Scholar]
  • 5.Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev Mol Cell Biol. 2007;8:519–529. doi: 10.1038/nrm2199. [DOI] [PubMed] [Google Scholar]
  • 6.Schroder M., Kaufman R.J. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–789. doi: 10.1146/annurev.biochem.73.011303.074134. [DOI] [PubMed] [Google Scholar]
  • 7.Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumour necrosis factor alpha: direct role in obesity linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
  • 8.Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., Ozdelen E., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;15(3065695):457–461. doi: 10.1126/science.1103160. [DOI] [PubMed] [Google Scholar]
  • 9.Harding H.P. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–1163. doi: 10.1016/S1097-2765(01)00264-7. [DOI] [PubMed] [Google Scholar]
  • 10.Scheuner D. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–1176. doi: 10.1016/S1097-2765(01)00265-9. [DOI] [PubMed] [Google Scholar]
  • 11.Scheuner D. Control of mRNA translation preserves endoplasmic reticulum function in β cells and maintains glucose homeostasis. Nature Med. 2005;11:757–764. doi: 10.1038/nm1259. [DOI] [PubMed] [Google Scholar]
  • 12.Pirot P., Ortis F., Cnop M., Ma Y., Hendershot L.M., Eizirik D.L., et al. Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes. 2007;56(4):1069–1077. doi: 10.2337/db06-1253. [DOI] [PubMed] [Google Scholar]
  • 13.Harding H.P., Ron D. Endoplasmic Reticulum Stress and the Development of Diabetes. Diabetes. 2002;3:51. doi: 10.2337/diabetes.51.2007.s455. [DOI] [PubMed] [Google Scholar]
  • 14.Xu C., Bailly M.B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–2664. doi: 10.1172/JCI26373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sundar R.S., Srinivasan V., Balasubramanyam M., Tatu U. Endoplasmic reticulum (ER) stress & diabetes. Ind J Med Res. 2007;125(3):411–424. [PubMed] [Google Scholar]
  • 16.Deborah M., Muoio, Christopher B. Newgard Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Reviews Mol Cell Biol. 2008;9:193–205. doi: 10.1038/nrm2327. [DOI] [PubMed] [Google Scholar]
  • 17.Kim I., Xu W., Reed J.C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–1030. doi: 10.1038/nrd2755. [DOI] [PubMed] [Google Scholar]
  • 18.Lin J.H., Walter P., Benedict Y. Endoplasmic Reticulum Stress in Disease Pathogenesis. Annual Review of Pathology: Mechanisms of Disease. 2008;3:399–425. doi: 10.1146/annurev.pathmechdis.3.121806.151434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Eizirik D.L., Cardozo A.K., Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(1):42–61. doi: 10.1210/er.2007-0015. [DOI] [PubMed] [Google Scholar]
  • 20.Boden G. Endoplasmic Reticulum Stress: Another Link between Obesity and Insulin Resistance/Inflammation? Diabetes. 2009;58:518–519. doi: 10.2337/db08-1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Fonseca S.G., Burcin M., Gromada J., Urano F. Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol. 2009;9(6):763–770. doi: 10.1016/j.coph.2009.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hotamisligil G.S. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell. 2010;140:900–917. doi: 10.1016/j.cell.2010.02.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.McAlpine CS, Bowes AJ, Werstuck GH. Diabetes, Hyperglycemia and Accelerated Atherosclerosis: Evidence Supporting a Role for Endoplasmic Reticulum (ER) Stress Signaling. Cardiovasc Hematol Disord Drug Targets 2010. [DOI] [PubMed]
  • 24.Srinivasan V., Tatu U., Mohan V., Balasubramanyam M. Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells. Mol Cell Biochem. 2009;328(1–2):217–224. doi: 10.1007/s11010-009-0092-7. [DOI] [PubMed] [Google Scholar]
  • 25.Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type2diabetes mellitus progressive requirement for multiple therapies (UKPDS 49). JAMA 1999:2005–2012. [DOI] [PubMed]
  • 26.Iwakura T., Fujimoto S., Kagimoto S., Inada A., Kubota A., Someya Y., et al. Sustained enhancement of Ca2+ influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun. 2000;271:422–428. doi: 10.1006/bbrc.2000.2616. [DOI] [PubMed] [Google Scholar]
  • 27.Cardozo A.K., Ortis F., Storling J., Feng Y.M., Rasschaert J., Tonnesen M., et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005;54:452–461. doi: 10.2337/diabetes.54.2.452. [DOI] [PubMed] [Google Scholar]
  • 28.UK Prospective Diabetes Study Intensive bloodglucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6. [DOI] [PubMed] [Google Scholar]
  • 29.Kahn S.E., Haffner S.M., Heise M.A., Herman W.H., Holman R.R., Jones N.P., et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–2443. doi: 10.1056/NEJMoa066224. [DOI] [PubMed] [Google Scholar]
  • 30.Inoguchi T., Umeda F., Kakimoto M., Sako Y., Ishii H., Noda K., et al. Chronic sulfonylurea treatment and hyperglycemia aggravate disproportionately elevated plasma proinsulin levels in patients with type 2 diabetes. Endocr J. 2000;47:763–770. doi: 10.1507/endocrj.47.763. [DOI] [PubMed] [Google Scholar]
  • 31.Dworacka M., Abramczyk M., Winiarska H., Kuczynski S., Borowska M., Szczawinska K., et al. Disproportionately elevated proinsulin levels in type 2 diabetic patients treated with sulfonylurea. Int J Clin Pharmacol Ther. 2006;44:14–21. doi: 10.5414/cpp44014. [DOI] [PubMed] [Google Scholar]
  • 32.Weng J., Li Y., Xu W., Shi L., Zhang Q., Zhu D., et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet. 2008;371:1753–1760. doi: 10.1016/S0140-6736(08)60762-X. [DOI] [PubMed] [Google Scholar]
  • 33.Greenwood RH, Mahler RF, Hales CN. Improvement in insulin secretion in diabetes after diazoxide. Lancet 1976;444–447. [DOI] [PubMed]
  • 34.Sargsyan E., Ortsater H., Thorn K., Bergsten P. Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic betacells. J Endocrinol. 2008;199(1):41–50. doi: 10.1677/JOE-08-0251. [DOI] [PubMed] [Google Scholar]
  • 35.Lamontagne J., Pepin E., Peyot M.L., Joly E., Ruderman N.B., Poitout V., et al. Pioglitazone Acutely Reduces Insulin Secretion and Causes Metabolic Deceleration of the Pancreatic β-Cell at Submaximal Glucose Concentrations. Endocrinol. 2009;150(8):3465–3474. doi: 10.1210/en.2008-1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Aston-Mourney K., Proietto J., Morahan J., Andrikopoulos S. Too much of a good thing: why it is bad to stimulate the beta cell to secrete insulin. Diabetol. 2008;51:540–545. doi: 10.1007/s00125-008-0930-2. [DOI] [PubMed] [Google Scholar]
  • 37.Qian L., Zhang S., Xu L., Peng Y. Endoplasmic reticulum stress in beta cells: latent mechanism of secondary sulfonylurea failure in type 2 diabetes? Med Hypotheses. 2008;71(6):889–891. doi: 10.1016/j.mehy.2008.07.031. [DOI] [PubMed] [Google Scholar]
  • 38.Capeau J., Magre J., Lascols O., Caron M., Bereziat V., Vigouroux C., et al. Diseases of adipose tissue: genetic and acquired lipodystrophies. Biochem Soc Trans. 2005;3:1073–1077. doi: 10.1042/BST0331073. [DOI] [PubMed] [Google Scholar]
  • 39.Lenhard J.M., Furfine E.S., Jain R.J., Ittoop O., Orband-Miller L.A., Blanchard S.G., et al. HIV protease inhibitors block adipogenesis and increase lipolysis in vitro. Antiviral Res. 2000;47:121–129. doi: 10.1016/S0166-3542(00)00102-9. [DOI] [PubMed] [Google Scholar]
  • 40.Koster J.C., Remedi M.S., Qiu H., Nichols C.G., Hruz P.W. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes. 2003;53:1695–1700. doi: 10.2337/diabetes.52.7.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Barbaro G., Iacobellis G. Metabolic syndrome associated with HIV and highly active antiretroviral therapy. Curr Diab Rep. 2009;9:37–42. doi: 10.1007/s11892-009-0008-7. [DOI] [PubMed] [Google Scholar]
  • 42.Parker R.A., Flint O.P., Mulvey R., Elosua C., Wang F., Fenderson W., et al. Endoplasmic reticulum stress links dyslipidemia to inhibition of proteasome activity and glucose transport by HIV protease inhibitors. Mol Pharmacol. 2005;67:1909–1919. doi: 10.1124/mol.104.010165. [DOI] [PubMed] [Google Scholar]
  • 43.Djedaini M., Peraldi P., Drici M.D., Darini C., Saint-Marc P., Dani C., et al. Lopinavir co-induces insulin resistance and ER stress in human adipocytes. Biochem Biophys Res Commun. 2009;386(1):96–100. doi: 10.1016/j.bbrc.2009.05.148. [DOI] [PubMed] [Google Scholar]
  • 44.Zha W., Liang G., Xiao J., Studer E.J., Hylemon P.B., Pandak W.M., et al. Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages. PLoS One. 2010;5(2):9069. doi: 10.1371/journal.pone.0009069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ikesugi K., Mulhern M.L., Madson C.J., Hosoya K., Terasaki T., Kador P.F., et al. Induction of endoplasmic reticulum stress in retinal pericytes by glucose deprivation. Curr Eye Res. 2006;31(11):947–953. doi: 10.1080/02713680600966785. [DOI] [PubMed] [Google Scholar]
  • 46.El-Remessy A.B., Abou-Mohamed G., Caldwell R.W., Caldwell R.B. High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci. 2003;44(7):3135–3143. doi: 10.1167/iovs.02-1022. [DOI] [PubMed] [Google Scholar]
  • 47.Roybal C.N., Yang S., Sun C.W., Hurtado D., Jagt D.L., Townes T.M., et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–14852. doi: 10.1074/jbc.M312948200. [DOI] [PubMed] [Google Scholar]
  • 48.Oshitari T., Asaumi N., Watanabe M., Kumagai K., Mitamura Y. Severe macular edema induced by pioglitazone in a patient with diabetic retinopathy: a case study. Vasc Health Risk Manag. 2008;4(5):1137–1140. doi: 10.2147/vhrm.s3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Li J., Wang J.J., Yu Q., Wang M., Zhang S.X. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583(9):1521–1527. doi: 10.1016/j.febslet.2009.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.The Diabetes ControlComplications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmol. 1995;102:647–661. doi: 10.1016/s0161-6420(95)30973-6. [DOI] [PubMed] [Google Scholar]
  • 51.Dagogo-Jack S. Hypoglycemia in type 1 diabetes mellitus: pathophysiology and prevention. Treat Endocrinol. 2004;3:91–103. doi: 10.2165/00024677-200403020-00004. [DOI] [PubMed] [Google Scholar]
  • 52.Heine R.J., Balkau B., Ceriello A., Prato S., Horton E.S., Taskinen M.R., et al. What does postprandial hyperglycaemia mean? Diabet Med. 2004;21:208–213. doi: 10.1111/j.1464-5491.2004.01149.x. [DOI] [PubMed] [Google Scholar]
  • 53.Dahl-Jorgensen K., Brinchmann-Hansen O., Hanssen K.F., Sandvik L., Aagenaes O. Rapid tightening of blood glucose control leads to transient deterioration of retinopathy in insulin dependent diabetes mellitus: the Oslo study. Br Med J. 1985;290:811–815. doi: 10.1136/bmj.290.6471.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Funatsu H., Yamashita H., Ohashi Y., Ishigaki T. Effect of rapid glycemic control on progression of diabetic retinopathy. Jpn J Ophthalmol. 1992;36:356–367. [PubMed] [Google Scholar]
  • 55.Bijian K., Cybulsky A.V. Stress proteins in glomerular epithelial cell injury. Contrib Nephrol. 2005;148:8–20. doi: 10.1159/000086039. [DOI] [PubMed] [Google Scholar]
  • 56.Cybulsky A.V. Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int. 2010;77(3):187–193. doi: 10.1038/ki.2009.389. [DOI] [PubMed] [Google Scholar]
  • 57.Liu G., Sun Y., Li Z., Song T., Wang H., Zhang Y., et al. Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochem Biophys Res Commun. 2008;370(4):651–656. doi: 10.1016/j.bbrc.2008.04.031. [DOI] [PubMed] [Google Scholar]
  • 58.Lindenmeyer M.T., Rastaldi M.P., Ikehata M., Neusser M.A., Kretzler M., Cohen C.D., et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol. 2008;19(11):2225–2236. doi: 10.1681/ASN.2007121313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Yorimitsu T., Klionsky D.J. Autophagy: molecular machinery for selfeating. Cell Death Differ. 2005;12(Suppl2):1542–1552. doi: 10.1038/sj.cdd.4401765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Ogata M., Hino S., Saito A., Morikawa K., Kondo S., Kanemoto S., et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26:9220–9231. doi: 10.1128/MCB.01453-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Rodriguez A., Duran A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., et al. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 2006;3:211–222. doi: 10.1016/j.cmet.2006.01.011. [DOI] [PubMed] [Google Scholar]
  • 62.Ebato C., Uchida T., Arakawa M., Komatsu M., Ueno T., Komiya K., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8:325–332. doi: 10.1016/j.cmet.2008.08.009. [DOI] [PubMed] [Google Scholar]
  • 63.Jung H.S., Chung K.W., Won Kim J., Kim J., Komatsu M., Tanaka K., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008;8:318–324. doi: 10.1016/j.cmet.2008.08.013. [DOI] [PubMed] [Google Scholar]
  • 64.Xie Z., Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–1109. doi: 10.1038/ncb1007-1102. [DOI] [PubMed] [Google Scholar]
  • 65.Zhou L., Zhang J., Fang Q., Liu M., Liu X., Jia W., et al. Autophagymediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance. Mol Pharmacol. 2009;76(3):596–603. doi: 10.1124/mol.109.057067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; Mar 26. [Epub ahead of print] [DOI] [PMC free article] [PubMed]
  • 67.Wang H.X., Ng T.B. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci. 1999;65:2663–2677. doi: 10.1016/S0024-3205(99)00253-2. [DOI] [PubMed] [Google Scholar]
  • 68.Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation of AMP-activated Protein Kinase Inhibits oxidized Low Density Lipoprotein-triggered Endoplasmic Reticulum (ER) Stress in vivo. Diabetes 2010. [Epub ahead of print] [DOI] [PMC free article] [PubMed]
  • 69.Kim DS, Jeong SK, Kim HR, Kim DS, Chae SW, Chae HJ. Metformin regulates palmitate-induced apoptosis and ER stress response in HepG2 liver cells. Immunopharmacol Immunotoxicol 2009 Dec 29. [Epub ahead of print] [DOI] [PubMed]
  • 70.Han K.L., Choi S.J., Lee J.Y., Song J., Joe M.K., Jung M.H., et al. Therapeutic Potential of Peroxisome Proliferators-Activated Receptor-α/γ Dual Agonist With Alleviation of Endoplasmic Reticulum Stress for the Treatment of Diabetes. Diabetes. 2008;57:737–745. doi: 10.2337/db07-0972. [DOI] [PubMed] [Google Scholar]
  • 71.Yoshiuchi K., Kaneto H., Matsuoka T.A., Kasami R., Kohno K., Iwawaki T., et al. Pioglitazone reduces ER stress in the liver: direct monitoring of in vivo ER stress using ER stress-activated indicator transgenic mice. Endocr J. 2009;56(9):1103–1111. doi: 10.1507/endocrj.K09E-140. [DOI] [PubMed] [Google Scholar]
  • 72.Tsunekawa S., Yamamoto N., Tsukamoto K., Itoh Y., Kaneko Y., Kimura T., et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol. 2007;193(1):65–74. doi: 10.1677/JOE-06-0148. [DOI] [PubMed] [Google Scholar]
  • 73.Cunha D.A., Ladriere L., Ortis F., Esteve M.I., Gurzov E.N., Lupi R., et al. Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB. Diabetes. 2009;58:2851–2862. doi: 10.2337/db09-0685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Ozcan U., Yilmaz E., Ozcan L., Furuhashi M., Vaillancourt E., Smith R.O., et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–1140. doi: 10.1126/science.1128294. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES