Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2010 May 27;25(2):182–187. doi: 10.1007/s12291-010-0033-y

Effects of garlic extract treatment in normal and streptozotocin diabetic rats infected with Candida albicans

M Bokaeian 3, A Nakhaee 1, Bita Moodi 1, A Farhangi 2, Azim Akbarzadeh 2,4,
PMCID: PMC3453106  PMID: 23105907

Abstract

The anti-candidial effect of garlic extract (Allium sativum L.) was investigated in normal and streptozotocin-induced diabetic rats. Diabetes was induced after a single intraperitoneal injection of streptozotocin (60 mg/kg). Rats were divided into six groups with fifteen rats in each group: (1) Normal control rats (2) Control rats + C. albicans (3) Control rats + garlic extract + C. albicans (4) Diabetic control rats (5) Diabetic rats + C. albicans (6) Diabetic rats + garlic extract + C. albicans. The concerned groups were inoculated with C.albicans on the 15 th day. At the end of one month experiment, fasted rats were killed by cervical decapitation. Blood was collected for estimation of glucose and C. albicans concentrations were estimated in liver and kidneys homogenates. A significant increase was observed in serum glucose levels in diabetic rats. A loss of bodyweight, polydipsia and polyphagia were observed in diabetic rats. Administration of alcoholic extract of garlic (0.25 g/kg body weight) reduced the hyperglycemia, polydipsia, polyphagia and associated weight loss of streptozotocin-treated rats. Administration of garlic extract significantly reduced C. albicans concentrations in liver and kidneys homogenates in infected control and diabetic rats. It is concluded that garlic extract improves candidia infection in diabetic rats.

Key Words: Garlic (Allium sativum L.), Streptozotocin induced-diabetic rats, Candida albicans

Full Text

The Full Text of this article is available as a PDF (81.7 KB).

References

  • 1.Baynes Y.W., Thorpe R. Role of oxidative stress in diabetic complications. Diabetes. 1999;48:1–9. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  • 2.World Health Organization; http:/www.who.int/medacenter/factsheets/138/en/Page1-3.
  • 3.Bailey C.J. Potential new treatments for type 2 diabetes. Trends Pharmacol Sci. 2000;21:259–265. doi: 10.1016/S0165-6147(00)01506-6. [DOI] [PubMed] [Google Scholar]
  • 4.Gray A.M., Flatt P.R. Pancreatic and extra-pancreatic effects of the traditional anti-diabetic plants, Medicago sativa (alfalfa) Brit J Nutr. 1997;78(2):325–334. doi: 10.1079/BJN19970150. [DOI] [PubMed] [Google Scholar]
  • 5.Second Report. Technical Report Series 646. Geneva: World Health Organization; 1980. [PubMed] [Google Scholar]
  • 6.Marles R.J., Farnsworth N. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2(2):137–189. doi: 10.1016/S0944-7113(11)80059-0. [DOI] [PubMed] [Google Scholar]
  • 7.Alarcon-Aguilara F.J., Roman-Ramos R., Perez-Gutierrez S. Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethnophamacol. 1998;61:101–110. doi: 10.1016/S0378-8741(98)00020-8. [DOI] [PubMed] [Google Scholar]
  • 8.Pari L., Umamaheswari J. Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res. 2000;14:1–3. doi: 10.1002/(SICI)1099-1573(200003)14:2<136::AID-PTR607>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • 9.Eidi A., Eidi M., Esmaeili E. Antidiabetic effects of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006;13(9–10):624–629. doi: 10.1016/j.phymed.2005.09.010. [DOI] [PubMed] [Google Scholar]
  • 10.Mathew P.T., Augusti K.T. Studies on the effect of allicin (diallyl disulphide-oxide) on alloxan diabetes: part I-hypoglycaemic action and enhancement of serum insulin effect and glycogen synthesis. Ind J Biochem Biophs. 1973;10:209–212. [PubMed] [Google Scholar]
  • 11.Sasaki J., Kita T., Ishita K., Uchisawa H., Matsue H. Antibacterial activity of garlic powder against Escherichia coli O-157. J Nutr Sci Vitaminol (Tokyo) 1999;45(6):785–790. doi: 10.3177/jnsv.45.785. [DOI] [PubMed] [Google Scholar]
  • 12.Vaijayanthimala J., Anandi C., Udhaya V., Pugalendi K.V. Anticandidal activity of certain South Indian medicinal plants. Phytother Res. 2000;14(3):207–209. doi: 10.1002/(SICI)1099-1573(200005)14:3<207::AID-PTR564>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 13.Gannoum M.A. Studies on the anticandidial mode of action of Allium sativum (garlic) J Gen Microbiol. 1988;134(11):2917–2924. doi: 10.1099/00221287-134-11-2917. [DOI] [PubMed] [Google Scholar]
  • 14.Lemar K.M., Turner M.P., Lioyd D. Garlic (Allium sativum) as an anti-Candida agent: a comparison of the efficacy of fresh garlic and freeze-dried extracts. J Appl Microbiol. 2002;93(3):398–405. doi: 10.1046/j.1365-2672.2002.01707.x. [DOI] [PubMed] [Google Scholar]
  • 15.Tsao S.M., Hsu C.C., Yin M.C. Garlic extract and diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. J Antimicrob Chemother. 2003;52:974–980. doi: 10.1093/jac/dkg476. [DOI] [PubMed] [Google Scholar]
  • 16.Dhuley J.N. Hamycin treatment of candidiasis in normal and diabetic rats. FEMS Immunol Med Microbiol. 1999;26:175–180. doi: 10.1111/j.1574-695X.1999.tb01386.x. [DOI] [PubMed] [Google Scholar]
  • 17.Siddique O., Sun Y., Lin J.C., Chien Y.W. Facilitated transdermal transport of insulin. J Pharm Sci. 1989;76:341–345. doi: 10.1002/jps.2600760416. [DOI] [PubMed] [Google Scholar]
  • 18.Barham D, Trinder P. An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 1972; 142–145. [DOI] [PubMed]
  • 19.Wild S., Roglic G., Green A., King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 20.Aksoy N., Vural H., Sabuncu T., Aksoy S. Effect of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2003;21:121–125. doi: 10.1002/cbf.1006. [DOI] [PubMed] [Google Scholar]
  • 21.Thulesen J., Qrskov C., Holst J.J., Poulsen S.S. Short term insulin treatment prevents the diabetogenic action of streptozotocin in rats. Endocrinol. 1997;138(1):62–68. doi: 10.1210/en.138.1.62. [DOI] [PubMed] [Google Scholar]
  • 22.Holemans K., Bree R.V., Verhaeghe J., Meurrens K., Assche A.V. Maternal semi starvation and streptozotocin-diabetes in rats have different effects on the in vivo glucose uptake by peripheral tissues in their female adult offspring. J Nutr. 1997;127:1371–1376. doi: 10.1093/jn/127.7.1371. [DOI] [PubMed] [Google Scholar]
  • 23.Weiss R.B. Streptozotocin: A review of its pharmacology, efficacy and toxicity. Cancer Treatment Report. 1982;66(3):427–438. [PubMed] [Google Scholar]
  • 24.Swanston-Flatt S.K., Day C.J., Flatt P.R. Traditional plant treatments for diabetes: Studies in normal and streptozotocin diabetic mice. Diabetologia. 1990;33:462–464. doi: 10.1007/BF00405106. [DOI] [PubMed] [Google Scholar]
  • 25.Chang M.L.W., Johnson M.A. Effect of garlic on carbohydrate metabolism and lipid synthesis in rats. J Nutr. 1980;110:931–936. doi: 10.1093/jn/110.5.931. [DOI] [PubMed] [Google Scholar]
  • 26.Rajani Kanth V., Uma Maheswara Reddy P., Raju T.N. Attenuation of streptozotocin-induced oxidative stress in hepatic and intestinal tissues of wistar rat by methanolic-garlic extract. Acta Diabetol. 2008;45(4):243–251. doi: 10.1007/s00592-008-0051-x. [DOI] [PubMed] [Google Scholar]
  • 27.Baghian A., Lee K.W. Systemic candidosis. J Leuk Biol. 1988;44:166–171. doi: 10.1002/jlb.44.3.166. [DOI] [PubMed] [Google Scholar]
  • 28.Baghian A., Lee K.W. Role of activated macrophages in resistance to systemic candidosis in beige mice. J Med Vet Mycol. 1989;27:51–55. doi: 10.1080/02681218980000071. [DOI] [PubMed] [Google Scholar]
  • 29.Giger D.K., Domer J.E., Moser S.A., McQuitty J.T. Experimental murine candidiasis: Pathological and immune responses in T lymphocyte depleted mice. Infect Immun. 1978;21:729–737. doi: 10.1128/iai.21.3.729-737.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Louria D.B., Brayton R.G., Finkel G. Studies on the pathogenesis of experimental Candida albicans infections in mice (abstract) Sabouraudia. 1963;2:271. [Google Scholar]
  • 31.Winblad B. Experimental renal candidiasis in mice and guinea pigs. Acta Pathol Microbiol Scan (Section A) 1975;83:406–414. doi: 10.1111/j.1699-0463.1975.tb01890.x. [DOI] [PubMed] [Google Scholar]
  • 32.Tsao S.M., Hsu C.C., Yin M.C. Meticillin-resistant Staphylococcus aureus infection in diabetic mice enhanced inflammation and coagulation. J Med Microbiol. 2006;55:379–385. doi: 10.1099/jmm.0.46054-0. [DOI] [PubMed] [Google Scholar]
  • 33.Raffel L., Pitsakis P., Levison S.P., Levison M.E. Experimental Candida albicans, Staphylococcus aureus and Streptococcus faecalis pyelonephritis in diabetic rats. Infect Immun. 1981;34(3):773–779. doi: 10.1128/iai.34.3.773-779.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Fraser V.J., Jones M., Dunkel J., Storter S., Mcdoff G., Dunagan W.C. Candidemia in a tertiary care hospital: epidemiology, risk factors and predictors of mortality. Clin Infect Dis. 1992;15:414–421. doi: 10.1093/clind/15.3.414. [DOI] [PubMed] [Google Scholar]
  • 35.Baghian A., Lee K.W. Elimination of Candida albicans from kidneys of mice during short-term systemic infections. Kidney Int. 1991;40:400–405. doi: 10.1038/ki.1991.225. [DOI] [PubMed] [Google Scholar]
  • 36.Yamashiro S., Kawakami K., Uezu K., Kinjo T., Miyagi K., Nakamura K., Saito A. Lower expression of Th1-related cytokines and inducible nitric oxide synthase in mice with streptozotocin-induced diabetes mellitus infected with Mycbacterium tuberculosis. Clin Exp Immunol. 2005;139(1):57–64. doi: 10.1111/j.1365-2249.2005.02677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Bhagyalakshmi N., Thimmaraju R., Venkatachalam L., Chidambara Murthy K.N., Sreedhar R.V. Nutraceutical applications of garlic and the intervention of biotechnology. Critical Reviews in Food Science and Nutrition. 2005;45(7–8):607–621. doi: 10.1080/10408390500455508. [DOI] [PubMed] [Google Scholar]
  • 38.Ankari S., Mirelman D. Antimicrobial properties of allicin from garlic. Microbes and Infection. 1999;1(2):125–129. doi: 10.1016/S1286-4579(99)80003-3. [DOI] [PubMed] [Google Scholar]
  • 39.Adetumbi M., Javor G.T., Lau B.H. Allium sativum (garlic) inhibits lipid synthesis by Candida albicans. Antimicrob Agents Chemother. 1986;30(3):499–501. doi: 10.1128/aac.30.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Kyo E., Uda N., Kakimoto M., Yokoyama K., Ushijima M., Sumioka I., Kasuga S., Itakura Y. Anti-allergic effects of aged garlic extract. Phytomedicine. 1997;4:335–340. doi: 10.1016/S0944-7113(97)80043-8. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES