Abstract
Alzheimer’s disease is the most common form of dementia in the elderly and it’s prevalence is rapidly rising. Oxidative stress plays important role in the pathophysiology of Alzheimer’s disease. Metals like copper, iron derived through diet can act as pro-oxidant under oxidative stress. In the present study, serum copper levels were evaluated in 50 patients with Alzheimer’s disease, 24 patients with Vascular Dementia and 30 controls. All the groups were also investigated for serum ceruloplsmin levels. The mean copper levels in Alzheimer’s disease and Vascular Dementia were significantly raised compared to controls. An attempt has been made to study the relationship of serum copper with ceruloplasmin. Our study found weak correlation between copper and ceruloplasmin levels in Alzheimer’s disease and Vascular Dementia.
Key Words: Copper, Alzheimer’s disease, Vascular Dementia, Oxidative stress, Neurodegeneration, Copper, Ceruloplasmin
Full Text
The Full Text of this article is available as a PDF (146.8 KB).
References
- 1.Bush A.I. The metallobiology of Alzheimer’s disease. Trends Neurosci. 2003;26:207–214. doi: 10.1016/S0166-2236(03)00067-5. [DOI] [PubMed] [Google Scholar]
- 2.Atwood C.S., Huang X., Moir R.D., Tanzi R.E., Bush A.I. Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst. 1999;36:309–64. [PubMed] [Google Scholar]
- 3.Squitti R., Lupoi D., Pasqualetti P., Forno G., Vernieri F., Chiovenda P., et al. Elevation of serum copper levels in Alzheimer’s disease. Neurology. 2002;59:1153–1161. doi: 10.1212/wnl.59.8.1153. [DOI] [PubMed] [Google Scholar]
- 4.Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23:134–147. doi: 10.1016/S0891-5849(96)00629-6. [DOI] [PubMed] [Google Scholar]
- 5.Pratico D., Uryu K., Leight S., Trojanoswki J.Q., Lee V.M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer’s amyloidosis. J Neurosci. 2001;21:4183–4187. doi: 10.1523/JNEUROSCI.21-12-04183.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Opazo C., Huang X., Cherny R.A., Moir R.D., Roher A.E., White A.R., et al. Metalloenzyme- like activity of Alzheimer’s disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2. J Biol Chem. 2002;277:40302–40308. doi: 10.1074/jbc.M206428200. [DOI] [PubMed] [Google Scholar]
- 7.Huang X., Atwood C.S., Hartshorn M.A., Multhaup G., Goldstein L.E., Scarpa R.C., et al. The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion. Experimental Gerontology. 2000;4(1):445–451. doi: 10.1021/bi990438f. [DOI] [PubMed] [Google Scholar]
- 8.Huang X., Cuajungco M.P., Atwood C.S., Hartshorn M.A., Tyndall J.D., Hanson G.R., et al. Cu (II) potentiation of Alzheimer A β neurotoxicity: correlation with cell- free hydrogen peroxide production and metal reduction. J Biol Chem. 1999;274:37111–37116. doi: 10.1074/jbc.274.52.37111. [DOI] [PubMed] [Google Scholar]
- 9.Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52. doi: 10.1016/S0022-510X(98)00092-6. [DOI] [PubMed] [Google Scholar]
- 10.Sayre L.M., Perry G., Harris P.L., Liu Y., Schubert K.A., Smith M.A. In situ catalysis by neurofibrillary tangles and senile plques in Alzheimer’s disease: a central role for bound transition metal. J Neurochem. 2000;74:270–279. doi: 10.1046/j.1471-4159.2000.0740270.x. [DOI] [PubMed] [Google Scholar]
- 11.Cuajungco M.P., Faget K.Y., Huang X., Tanzi R.E., Bush A.I. Metal chelation as therapy for Alzheimer’s disease. Ann N Y Acad Sci. 2000;920:292–304. doi: 10.1111/j.1749-6632.2000.tb06938.x. [DOI] [PubMed] [Google Scholar]
- 12.Squitti R., Pasqualetti P., Cassetta E., Forno G., Cesaretti S., Pedace F., et al. Elevation of serum copper levels discriminates Alzheimer’s disease from vascular dementia. Neurology. 2003;60:2013–2014. doi: 10.1212/01.wnl.0000068013.27968.29. [DOI] [PubMed] [Google Scholar]
- 13.Murray RK, Granner DK, Mayes PA, Rodwell VW. Nutrition. Harper’Biochemistry 1990; 571–579.
- 14.Barceloux D.G. Copper. J Toxicol Clin Toxicol. 1999;37:217–230. doi: 10.1081/CLT-100102421. [DOI] [PubMed] [Google Scholar]
- 15.Linder M.C., Hazegh-azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63:797S–7811S. doi: 10.1093/ajcn/63.5.797. [DOI] [PubMed] [Google Scholar]
- 16.Johnson P.E., Milne D.B., Lykken G.L. Effects of age and sex on copper absorption, biological half life, and status in humans. Am J Clin Nutr. 1992;56:917–925. doi: 10.1093/ajcn/56.5.917. [DOI] [PubMed] [Google Scholar]
- 17.McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinic diagnosis of Alzheimer’s disease: report of the NINCDS- ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
- 18.Abe A., Yamashita S., Noma A. Sensitive, direct colorimetric assay for copper in serum. Clin Chem. 1989;35:552–554. [PubMed] [Google Scholar]
- 19.Tietz Textbook of Clinical Chemistry (Edited by Burtis CA and Ashwood ER Eds): Third Edition WB Saunders Company (1999).
- 20.González C., Martín T., Cacho J., Breñs M.T., Arroyo T., García-Berrocal B., et al. Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriers. Eur J Clin Invest. 1999;29:637–642. doi: 10.1046/j.1365-2362.1999.00471.x. [DOI] [PubMed] [Google Scholar]
- 21.Squitti R., Rossini P.M., Cassetta E., Moffa F., Pasqualetti P., Cortesi M., et al. D- penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur J Clin Invest. 2002;32:51–59. doi: 10.1046/j.1365-2362.2002.00933.x. [DOI] [PubMed] [Google Scholar]
- 22.Regland B., Lehmann W., Abedini I., Blennow K., Jonsson M., Karlsson I., et al. Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord. 2001;12:408–414. doi: 10.1159/000051288. [DOI] [PubMed] [Google Scholar]
- 23.Ozcankaya R., Delibas N. Malondialdehyde, superoxide dismutase, melatonin, iron, copper and zinc blood concentration in patients with Alzheimer’s Disease: cross-sectional studies. Croat Med J. 2002;43:28–32. [PubMed] [Google Scholar]
- 24.Kontush A., Berndt C., Weber W., Akopyan V., Arlt S., Schippling S., et al. Amyloid- β is an antioxidant for lipoprotein cerebrospinal fluid and plasma. Free Radic Biol Med. 2001;30:119–128. doi: 10.1016/S0891-5849(00)00458-5. [DOI] [PubMed] [Google Scholar]
- 25.Zou K., Gong J.S., Yanagisawa K., Michikawa M. A novel function of monometric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci. 2002;22:4833–4841. doi: 10.1523/JNEUROSCI.22-12-04833.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Pullen R.G., Franklin P.A., Hall G.H. Zinc uptake from blood into brain and other tissues in the rat. Neurochem Res. 1990;15:1003–1008. doi: 10.1007/BF00965746. [DOI] [PubMed] [Google Scholar]
- 27.Pullen R.G., Franklin P.A., Hall G.H. Zinc uptake from blood into brain in the rat. J Neurochem. 1991;56:485–489. doi: 10.1111/j.1471-4159.1991.tb08176.x. [DOI] [PubMed] [Google Scholar]