Abstract
The aim of the present study was to evaluate the antidiabetic and ameliorative potential of aqueous extract of Ficus bengalensis bark in streptozotocin induced diabetic rats. The effect of oral administration of aqueous extract of F. bengalensis bark on blood glucose, serum electrolytes, serum glycolytic enzymes, liver microsomal protein, hepatic cytochrome P-450 dependent monooxygenase enzymes and lipid peroxidation in liver and kidney of streptozotocin -induced diabetic rats was studied. Oral administration of Ficus bengalensis to fed, fasted and glucose loaded diabetic rats significantly [F > 0.05 (ANOVA) and P< 0.05 (DMRT)] decreased the blood glucose level at 5 hrs and restored the levels of serum electrolytes, glycolytic enzymes and hepatic cytochrome P-450 dependent enzyme systems and decreased the formation of liver and kidney lipid peroxides at the end of 12 weeks. Further, the aqueous extract of Ficus bengalensis at a dose of 500mg/kg/day exhibits significant antidiabetic and ameliorative activity as evidenced by histological studies in normal and Ficus bengalensis treated streptozotocin induced diabetic rats. On the basis of our findings, it could be used as an antidiabetic and ameliorative agent for better management of diabetes mellitus.
Key Words: Ficus bengalensis, Antidiabetic activity, Ameliorative potential, Cytochrome P-450 dependent monooxygenase enzymes, Lipid peroxidation
Full Text
The Full Text of this article is available as a PDF (243.1 KB).
References
- 1.Harrower A.D. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J Diabetes Complications. 1994;8:201–203. doi: 10.1016/1056-8727(94)90044-2. [DOI] [PubMed] [Google Scholar]
- 2.Reuser A.J., Wisselaar H.A. An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Euro J Clin Invest. 1994;24:19–24. doi: 10.1111/j.1365-2362.1994.tb02251.x. [DOI] [PubMed] [Google Scholar]
- 3.Campbell R.K., White J.R., Saulie B.A. Metformin: a new oral biguanide. Clin Therapeutics. 1996;18:360–371. doi: 10.1016/S0149-2918(96)80017-8. [DOI] [PubMed] [Google Scholar]
- 4.Mosh M.J. Current and future prospectus of integrating traditional and alternative medicine in the management of diseases in Tanzania. Tanzan Health Res Bull. 2005;7:159–167. doi: 10.4314/thrb.v7i3.14254. [DOI] [PubMed] [Google Scholar]
- 5.Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. Intl J Food Sci Nutrl. 2005;56:399–414. doi: 10.1080/09637480500512872. [DOI] [PubMed] [Google Scholar]
- 6.Satyavati G.V., Raina M.K., Sharma M., editors. Medicinal plants of India, Vol.1. New Delhi: Indian Council of Medical Research; 1976. [Google Scholar]
- 7.Shrotri D.S., Aiman R. The relationship of the post absorptive state to the hypoglycaemic action studies on Ficus bengalensis. Ind J Med Res. 1960;48:162–163. [PubMed] [Google Scholar]
- 8.Vohra S.B., Parasar G.C. Antidiabetic studies on Ficus bengalensis Linn. Ind J Pharm. 1970;32:68–69. [Google Scholar]
- 9.Shukla R., Prabhu K.M., Murthy P.S. Hypoglycaemic effect of the water extract of Ficus bengalensis in alloxan recovered, mildly diabetic and severely diabetic rabbits. Intl J Diabetes Dev Count. 1994;14:78–81. [Google Scholar]
- 10.Shukla R., Anand K., Prabhu K.M., Murthy P.S. Hypocholesterolemic effect of water extract of the bark of Banyan tree, Ficus bengalensis. Ind J Clin Biochem. 1995;10:14–18. doi: 10.1007/BF02873662. [DOI] [Google Scholar]
- 11.Shukla R., Gupta S., Gambhir J.K., Prabhu K.M., Murthy P.S. Antioxidant effect of aqueous extract of the bark of Ficus bengalensis in hypercholestralemic rabbits. J Ethnopharmacol. 2004;92:47–51. doi: 10.1016/j.jep.2004.01.020. [DOI] [PubMed] [Google Scholar]
- 12.Subramanian P.M., Misra G.S. Chemical constituents of Ficus bengalensis (Part II) Pol J Pharmacol. 1978;30:559–562. [PubMed] [Google Scholar]
- 13.Kumar R.V., Augusti K.T. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Ind J Biochem Biophys. 1989;26:400–404. [PubMed] [Google Scholar]
- 14.Cherian S., Augusti K.T. Antidiabetic effect of glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Ind J Exp Biol. 1993;31:26–29. [PubMed] [Google Scholar]
- 15.Sarkar S., Pranava M., Marita R.A. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol Res. 1996;33:1–4. doi: 10.1006/phrs.1996.0001. [DOI] [PubMed] [Google Scholar]
- 16.Braham D., Trinder P. Estimation of glucose by glucose oxidase method. Analyst. 1972;97:142–145. doi: 10.1039/an9729700142. [DOI] [PubMed] [Google Scholar]
- 17.Leloir LF, Goldenberg SH. Glycogen synthase from rat liver. In: Methods in Enzymology, Colowik SP, Kalpan NO (Eds.). Academic Press 1979; 145–148.
- 18.Katz N.R., Nauck M.A., Wilson P.T. Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures. Biochem Biophys Res Communs. 1979;88:23–29. doi: 10.1016/0006-291X(79)91691-7. [DOI] [PubMed] [Google Scholar]
- 19.King J. Colorimetric determination of serum lactate dehydrogenase. J Med Lab Tech. 1959;16:265–269. [Google Scholar]
- 20.Slater E.C., Bonner W.D. Effect of fluride on succinate oxidase system. Biochem J. 1952;52:185–196. doi: 10.1042/bj0520185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Mehler A.H., Kornberg A., Grisolia S., Ochoa S. The enzymatic mechanism of oxidation- reduction between malate or isocitrate and pyruvate. J Biol Chem. 1948;714:961–977. [PubMed] [Google Scholar]
- 22.Nyarko A.K., Ankah N.A., Ofosuchene M., Sittie A.A. Acute and sub-chronic evaluation of Indigofera arreeta; Absence of both toxicity and modulation of selected cytochrome P 450 isoenzymes in ddY mice. Phytotherapy Res. 1999;13:686–688. doi: 10.1002/(SICI)1099-1573(199912)13:8<686::AID-PTR519>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- 23.Nichans W.G., Samuelsson D. Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6:126–130. doi: 10.1111/j.1432-1033.1968.tb00428.x. [DOI] [PubMed] [Google Scholar]
- 24.Jiang Z.Y., Hunt J.V., Wolft S.D. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992;202:384–389. doi: 10.1016/0003-2697(92)90122-N. [DOI] [PubMed] [Google Scholar]
- 25.Chaude M.A., Orisakwe O.E., Afonne O.J., Gamenial K.S., Vongtau O.H., Ob E. Hypoglycemic effect of the aqueous extract of Boerrhavia diffusa leaves. Ind J Pharmacol. 2001;33:215–216. [Google Scholar]
- 26.Aybar M., Sanchez Riera A.N., Grau A., Sanchez S.S. Hypoglycemic effect of the water extract of Smallanthus soncifolius (yacon) leaves in normal and in diabetic rats. J Ethnopharmacol. 2002;74:125–132. doi: 10.1016/S0378-8741(00)00351-2. [DOI] [PubMed] [Google Scholar]
- 27.Cherian S., Vinod Kumar R., Augusti K.T., Kidwai K.R. Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of Ficus bengalensis Linn. Ind J Biochem BioPhys. 1992;29:380–382. [PubMed] [Google Scholar]
- 28.Pari L., Maheswari J.U. Antihyperglycemic activity of Amausa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytotherapy Res. 2000;14:136–138. doi: 10.1002/(SICI)1099-1573(200003)14:2<136::AID-PTR607>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- 29.Prince S.M., Menon V.P. Hypoglycemic and other related actions of Tinospora cordiifilo in alloxan-induced diabetic rats. J Ethnopharmacol. 2000;70:9–15. doi: 10.1016/S0378-8741(99)00136-1. [DOI] [PubMed] [Google Scholar]
- 30.Hikino H., Kobayashi M., Suzuki M., Konno Y. Mechanism of hypoglycemic activity of aconitan S.A glycan from Aconitum carmichaeli roots. J Ethnopharmacol. 1989;19:916–923. doi: 10.1016/0378-8741(89)90035-4. [DOI] [PubMed] [Google Scholar]
- 31.Weber G., Lea M.A., Fisher E.A., Stamm N.B. Regulatory pattern of liver carbohydrate metabolizing enzymes; insulin as an inducer of key glycolytic nzymes. Enzymol Clin. 1966;7:11–24. doi: 10.1159/000457201. [DOI] [PubMed] [Google Scholar]
- 32.Narendhirakannan R.T., Subramanian S., Kandasamy M. Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin — induced diabetes in experimental rats. Clin Exp Pharmacol Physiol. 2006;33:1150–1157. doi: 10.1111/j.1440-1681.2006.04507.x. [DOI] [PubMed] [Google Scholar]
- 33.Chen T.L., Chang H.C., Chen T.G., Tai Y.T., Chen R.M. Modulation of cytochrome P-450 dependent monooxygenases in streptozotocin-induced diabetic hamster: I. Effects of propofol on defluorination and cytochrome P-450 activities. Acta Anaesthesiol Science. 2000;38:15–21. [PubMed] [Google Scholar]
- 34.Barnett C.R., Flatt P.R., Toannides C. Modulation of rat hepatic cytochrome P 450 composition by long term streptozotocin-induced insulin dependent diabetes. Biochemical Toxicol. 1994;9:63–69. doi: 10.1002/jbt.2570090203. [DOI] [PubMed] [Google Scholar]
- 35.Kaleem M., Asif M., Ahmed Q.U., Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin — induced diabetic rats. Singapore Med J. 2006;47:670–675. [PubMed] [Google Scholar]
- 36.Mano T., Shinohara R., Nagasaka A., Nakagawa H., Uchimura K., Hayashi R., et al. Scavenging effect of nicorandil on free radicals and lipid peroxide in streptozotocin-induced diabetic rats. Metabol. 2000;49:427–431. doi: 10.1016/S0026-0495(00)80003-7. [DOI] [PubMed] [Google Scholar]
- 37.Halliwall B., Gutteridge J.M.C. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendern Press; 1989. [Google Scholar]
- 38.Sato Y., Hotto N., Sakamoto N., Matsuoka S., Ohishi N., Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med. 1979;21:104–110. doi: 10.1016/0006-2944(79)90061-9. [DOI] [PubMed] [Google Scholar]
- 39.Hunt J.V., Smith C.C.T., Wolff S.F. Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 1990;9:1420–1424. doi: 10.2337/diabetes.39.11.1420. [DOI] [PubMed] [Google Scholar]
- 40.Vinod Kumar R., Augusti K.T. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Ind J Biochem Biophys. 1989;26:400–404. [PubMed] [Google Scholar]