Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2009 Sep 16;24(3):250–256. doi: 10.1007/s12291-009-0047-5

Ethanolic leaves extract of Trianthema portulacastrum L. ameliorates aflatoxin B1 induced hepatic damage in rats

G Sharmila Banu 1, Ganeshan Kumar 2,, A G Murugesan 3
PMCID: PMC3453304  PMID: 23105844

Abstract

Aflatoxins are potent hepatotoxic and hepatocarcinogenic agents. Reactive oxygen species and consequent peroxidative damage caused by aflatoxin are considered to be the main mechanisms leading to hepatotoxicity. The present investigation aims at assessing the hepatoprotective effect of ethanolic leaves extract of Trianthema portulacastrum on aflatoxin B1 (AFB1)-induced hepatotoxicity in a rat model. The hepatoprotection of T. portulacastrum is compared with silymarin, a well known standard hepatoprotectant. Lactate dehydrogenase, alkaline phosphatase, alanine and aspartate aminotransferases were found to be significantly increased in the serum and decreased in the liver of AFB1 administered (1 mg/kg bw, orally) rats, suggesting hepatic damage. Marked increase in the lipid peroxide levels and a concomitant decrease in the enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione-S-transferase) and nonenzymic (reduced glutathione, vitamin C and vitamin E) antioxidants in the hepatic tissue were observed in AFB1 administered rats. Pretreatment with T. portulacastrum (100 mg/kg/p.o) and silymarin (100 mg/kg /p.o) for 7 days reverted the condition to near normal. The results of this study indicate that the ethanolic leaves extract of T. portulacastrum is a potent hepatoprotectant as silymarin.

Key Words: Aflatoxin B1, Trianthema portulacastrum, Hepatotoxic, Hepatocarcinogenic

Full Text

The Full Text of this article is available as a PDF (79.0 KB).

References

  • 1.Bennett J.W., Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Fink-Gremmels J. Mycotoxins: their implications for human and animal health. Vet Q. 1999;21:115–120. doi: 10.1080/01652176.1999.9695005. [DOI] [PubMed] [Google Scholar]
  • 3.Wogan G.N. Aflatoxin as a human carcinogen. Hepatol. 1999;30:573–575. doi: 10.1002/hep.510300231. [DOI] [PubMed] [Google Scholar]
  • 4.Sharma R.A., Farmer P.B. Biological relevance of adduct detection to the chemoprevention of cancer. Clin Cancer Res. 2004;10:4901–4912. doi: 10.1158/1078-0432.CCR-04-0098. [DOI] [PubMed] [Google Scholar]
  • 5.Klein P.J., Vleet T.R., Hall J.O., Coulombe R.A., Jr Biochemical factors underlying the age-related sensitivity of turkeys to aflatoxin B(1) Comp Biochem Physiol C. 2002;132:193–201. doi: 10.1016/s1532-0456(02)00065-0. [DOI] [PubMed] [Google Scholar]
  • 6.Preston R.J., Williams G.M. DNA-reactive carcinogens: mode of action and human cancer hazard. Criterion Rev Toxicol. 2005;35:673–683. doi: 10.1080/10408440591007278. [DOI] [PubMed] [Google Scholar]
  • 7.Towner R.A., Qian S.Y., Kadiiska M.B., Mason R.P. In vivo identification of aflatoxin-induced free radicals in rat bile. Free Rad Biol Med. 2003;35:1330–1340. doi: 10.1016/j.freeradbiomed.2003.08.002. [DOI] [PubMed] [Google Scholar]
  • 8.Sohn D.H., Kim Y.C., Oh S.H., Park E.J., Li X., Lee B.H. Hepatoprotective and free radical scavenging effects of Nelumbo nucifera. Phytomed. 2003;10:165–169. doi: 10.1078/094471103321659889. [DOI] [PubMed] [Google Scholar]
  • 9.Berg D., Youdim M.B., Riederer P. Redox imbalance. Cell Tiss Res. 2004;318:201–213. doi: 10.1007/s00441-004-0976-5. [DOI] [PubMed] [Google Scholar]
  • 10.Janssen Y.M., Houten B., Borm P.J., Mossman B.T. Cell and tissue responses to oxidative damage. Lab Invest. 1993;69:261–274. [PubMed] [Google Scholar]
  • 11.Franschini F., Demartini G., Esposti D. Pharmacology of silymarin, Linn. Drug Invest. 2002;22:51–65. doi: 10.2165/00044011-200222010-00007. [DOI] [Google Scholar]
  • 12.Gazak R., Svobodova A., Psotova J., Sedmera P., Prikrylova V., Walterova D., Kren V. Oxidized derivatives of silybin and their antiradical and antioxidant activity. Bioorg Med Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. [DOI] [PubMed] [Google Scholar]
  • 13.Soto C., Recoba R., Barron H., Alvarez C., Favari L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp Biochem Physiol C. 2003;136:205–212. doi: 10.1016/S1095-6433(03)00134-X. [DOI] [PubMed] [Google Scholar]
  • 14.Valenzuela A., Monica A., Soledad V., Ricardo G. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rats. Planta Med. 1989;55:420–422. doi: 10.1055/s-2006-962056. [DOI] [PubMed] [Google Scholar]
  • 15.Kirtikar K.R., Basu B.D. In: Indian Medicinal Plants. 2nd ed. Basu L.M., editor. India: Allahabad; 1933. pp. 1180–1181. [Google Scholar]
  • 16.Shastri B.N. Wealth of India-Raw Materials, Vol. 10. New Delhi: CSIR Publication; 1952. pp. 19–23. [Google Scholar]
  • 17.Bhattacharya S., Chatterjee M. Protective role of Trianthema portulacastrum against diethylnitrosamine induced experimental hepatocarcinogenesis. Cancer Lett. 1998;129:7–13. doi: 10.1016/S0304-3835(98)00085-8. [DOI] [PubMed] [Google Scholar]
  • 18.Kumar G., Sharmila Banu G., Vanitha Pappa P., Sundararajan M., Rajasekara Pandian M. Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats. J Ethnopharmacol. 2004;92:37–40. doi: 10.1016/j.jep.2003.12.009. [DOI] [PubMed] [Google Scholar]
  • 19.Kumar G., Sharmila Banu G., Rajasekara Pandian M. Evaluation of the antioxidant activity of Trianthema portulacastrum. Indian J Pharmacol. 2005;37:331–334. doi: 10.4103/0253-7613.16861. [DOI] [Google Scholar]
  • 20.DHEW Publication (NIH), revised, Office of Science and Health Reports. Bethesda, USA: DRR/NIH; 1985. [Google Scholar]
  • 21.King J. The dehydrogenases or oxidoreductases — Lactate dehydrogenase. In: King J., editor. Practical Clinical Enzymology. London: Van Nostrand Company Ltd; 1965. pp. 83–93. [Google Scholar]
  • 22.King J. The hydrolases-acid and alkaline phosphatases. In: King J., editor. Practical Clinical Enzymology. London: Van Nostrand Company Ltd; 1965. pp. 191–208. [Google Scholar]
  • 23.King J. The transferases — alanine and aspartate transaminases. In: King J., editor. Practical Clinical Enzymology. London: Van Nostrand Company Ltd; 1965. pp. 121–138. [Google Scholar]
  • 24.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 25.Hogberg J., Larson R.E., Kristoferson A., Orrenius S. NADPH dependent reductase solubilized from microsomes by peroxidation and its activity. Biochem Biophy Res Comm. 1974;56:836–842. doi: 10.1016/0006-291X(74)90681-0. [DOI] [PubMed] [Google Scholar]
  • 26.Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
  • 27.Sinha A.K. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7. [DOI] [PubMed] [Google Scholar]
  • 28.Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
  • 29.Staal G.E., Visser J., Veeger C. Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta. 1969;185:39–48. doi: 10.1016/0005-2744(69)90280-0. [DOI] [PubMed] [Google Scholar]
  • 30.Beutler E. Active transport of glutathione disulfide from erythrocytes. In: Larson A., Orrenius S., Holmgren A., Mannervik B., editors. Functions of Glutathione — Biochemical, Physiological, Toxicological and Clinical Aspects. New York: Raven Press; 1983. p. 65. [Google Scholar]
  • 31.Habig W.H., Pabst M.J., Jakoby W.B. Glutathione Stransferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
  • 32.Moron M.S., Depierre J.W., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78. doi: 10.1016/0304-4165(79)90289-7. [DOI] [PubMed] [Google Scholar]
  • 33.Omaye S.T., Turnbull J.D., Sauberlich H.E. Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol. 1979;62:3–11. doi: 10.1016/0076-6879(79)62181-X. [DOI] [PubMed] [Google Scholar]
  • 34.Desai I.D. Vitamin E analysis methods for animal tissues. Met Enzymol. 1984;105:138–147. doi: 10.1016/S0076-6879(84)05019-9. [DOI] [PubMed] [Google Scholar]
  • 35.Mishra H.N., Das C. A review on biological control and metabolism of aflatoxin. Critic Rev Food Sci Nut. 2003;43:245–264. doi: 10.1080/10408690390826518. [DOI] [PubMed] [Google Scholar]
  • 36.Cheng Y.H., Shen T.F., Pang V.F., Chen B.J. Effects of aflatoxin and carotenoids on growth performance and immune response in mule ducklings. Comp Biochem Physiol C. 2001;128:19–26. doi: 10.1016/S1096-4959(00)00296-7. [DOI] [PubMed] [Google Scholar]
  • 37.Plaa G.L., Hewitt W.R. Detection and evolution of chemically induced liver injury. In: Hayes A.W., editor. Principles and Methods of Toxicology. New York: Raven press; 1986. pp. 401–441. [Google Scholar]
  • 38.Wang C.J., Shiow S.J., Lin J.K. Effects of crocetin on the hepatotoxicity and hepatic DNA binding of aflatoxin B1 in rats. Carcinogenesis. 1991;12:459–462. doi: 10.1093/carcin/12.3.459. [DOI] [PubMed] [Google Scholar]
  • 39.Liu J., Yang C.F., Wasser S., Shen H.M., Tan C.E., Ong C.N. Protection of salvia miltiorrhiza against aflatoxin B1 induced hepatocarcinogenesis in Fischer 344 rats dual mechanisms involved. Life Sci. 2001;69:309–326. doi: 10.1016/S0024-3205(01)01116-X. [DOI] [PubMed] [Google Scholar]
  • 40.Kalengayi M.M., Desmet V.J. Sequential histological and histochemical study of the rat liver during aflatoxin B1 induced carcinogenesis. Cancer Res. 1975;35:2845–2852. [PubMed] [Google Scholar]
  • 41.Yin S.J., Kao M.C., Lee S.C. Sequential biochemical and histological changes in rats treated with aflatoxin B1. Brit J Cancer. 1980;42:319–325. doi: 10.1038/bjc.1980.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sudharsan P.T., Mythili Y., Selvakumar E., Varalakshmi P. Cardioprotective effect of pentacyclic triterpene, lupeol and its ester on cyclophosphamide induced oxidative stress. Hum Exp Toxicol. 2005;24:313–318. doi: 10.1191/0960327105ht530oa. [DOI] [PubMed] [Google Scholar]
  • 43.Nagaraj M., Sunitha S., Varalakshmi P. Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure. J Appl Toxicol. 2000;20:413–417. doi: 10.1002/1099-1263(200009/10)20:5<413::AID-JAT706>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  • 44.Niki E., Yoshida Y., Saito Y., Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophy Res Comm. 2005;338:668–676. doi: 10.1016/j.bbrc.2005.08.072. [DOI] [PubMed] [Google Scholar]
  • 45.Shen H.M., Shi C.Y., Lee H.P., Ong C.N. Aflatoxin B1 induced lipid peroxidation in rat liver. Toxicol Appl Pharmacol. 1994;127:145–150. doi: 10.1006/taap.1994.1148. [DOI] [PubMed] [Google Scholar]
  • 46.Rastogi R., Srivastava A.K., Rastogi A.K. Long term effect of aflatoxin B(1) on lipid peroxidation in rat liver and kidney: effect of picroliv and silymarin. Phytother Res. 2001;15:307–310. doi: 10.1002/ptr.722. [DOI] [PubMed] [Google Scholar]
  • 47.Larsson P., Busk L., Tjalve H. Hepatic and extrahepatic bioactivation and GSH conjugation of aflatoxin B1 in sheep. Carcinogenesis. 1994;15:947–955. doi: 10.1093/carcin/15.5.947. [DOI] [PubMed] [Google Scholar]
  • 48.Raney K.D., Meyer D.J., Ketterer B., Harris T.M., Guengerich F.P. Glutathione conjugation of aflatoxin B1 exo- and endoepoxides by rat and human glutathione S-transferases. Chem Res Toxicol. 1992;5:470–478. doi: 10.1021/tx00028a004. [DOI] [PubMed] [Google Scholar]
  • 49.Verma R.J., Nair A. Ameliorative effect of vitamin E on aflatoxin induced lipid peroxidation in the testis of mice. Asian J Androl. 2001;3:217–221. [PubMed] [Google Scholar]
  • 50.Johnson F., Giulivi C. Superoxide dismutases and their impact upon human health. Mol Asp Med. 2005;26:340–352. doi: 10.1016/j.mam.2005.07.006. [DOI] [PubMed] [Google Scholar]
  • 51.Singh U., Devaraj S., Jialal I. Vitamin E, oxidative stress and inflammation. Annl Rev Nut. 2005;25:151–174. doi: 10.1146/annurev.nutr.24.012003.132446. [DOI] [PubMed] [Google Scholar]
  • 52.Lee I.M. Antioxidant vitamins in the prevention of cancer. Proc Assoc Am Phys. 1999;111:10–15. doi: 10.1046/j.1525-1381.1999.09230.x. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES