Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2009 Sep 16;24(3):301–306. doi: 10.1007/s12291-009-0056-4

Effects of chronic ethanol consumption in blood: A time dependent study on rat

Subir Kumar Das 1,2,, L Dhanya 1, Sowmya Varadhan 1, Sukhes Mukherjee 1, D M Vasudevan 1
PMCID: PMC3453313  PMID: 23105853

Abstract

Alcohol consumption and health outcomes are complex and multidimensional. Ethanol (1.6g / kg body weight/ day) exposure initially affects liver function followed by renal function of 16–18 week-old male albino rats of Wistar strain weighing 200–220 g. Chronic ethanol ingestion increased in thiobarbituric acid reactive substances level and glutathione s-transferase activity; while decreased reduced gluatathione content and activities of catalase, glutathione peroxidase and glutathione reductase in a time dependent manner in the hemolysate. Though superoxide dismutase activity increased initially might be due to adaptive response, but decreased later. Elevation of serum nitrite level and transforming growth factor-b1 activity indicated that long-term ethanol consumption may cause hepatic fibrosis and can elicit pro-angiogenic factors. However, no alteration in vascular endothelial growth factor-C activity indicated that ethanol consumption is not associated with lymphangiogenesis. Therefore, we conclude that long-term ethanol-induced toxicity is linked to an oxidative stress, which may aggravate to fibrosis and elevate pro-angiogenic factors, but not associated with lymphangiogenesis.

Key Words: Ethanol, Glutathione, Liver function, Nitric oxide, Oxidative stress, Transforming growth factor, Vascular endothelial growth factor

Full Text

The Full Text of this article is available as a PDF (123.5 KB).

References

  • 1.Das S.K., Balakrishnan V., Vasudevan D.M. Alcohol: Its health and social impact in India. Nat Med J Ind. 2006;19(2):94–99. [PubMed] [Google Scholar]
  • 2.Fernandez-Checha J.C., Kaplowitz N., Colell A., Gracia-Ruiz C. Oxidative stress and alcoholic liver disease. Alcohol Health & Res World. 1997;21:321–324. [PMC free article] [PubMed] [Google Scholar]
  • 3.Arteel G.E., Iimuro Y., Yin M., Raleigh J.A., Thurman R.G. Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo. Hepatol. 1997;25:920–926. doi: 10.1002/hep.510250422. [DOI] [PubMed] [Google Scholar]
  • 4.Bardag-Gorce F., French B., Li J., Riley N., Yuan Q., Valinluck V., et al. The importance of cycling of blood alcohol levels in the pathogenesis of experimental alcoholic liver disease in rats. Gasteroenterol. 2002;123:325–335. doi: 10.1053/gast.2002.34177. [DOI] [PubMed] [Google Scholar]
  • 5.Das S.K., Vasudevan D.M. Modulation of lecithin activity by vitamin-B complex to treat on ethanol induced oxidative stress in liver. Ind J Exp Biol. 2006;44:791–801. [PubMed] [Google Scholar]
  • 6.Kingsley G.R. The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med. 1942;27:840–845. [Google Scholar]
  • 7.Doumas B.T., Peter T., Jr. Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta. 1997;258:3–20. doi: 10.1016/S0009-8981(96)06446-7. [DOI] [PubMed] [Google Scholar]
  • 8.Larsen K. Creatinine assay by a reaction kinetic principle. Clin Chem Acta. 1972;41:209. doi: 10.1016/0009-8981(72)90513-X. [DOI] [PubMed] [Google Scholar]
  • 9.Kleinbongard P., Rasaf T., Dejam A., Kerber S., Kelm M. Griess method for nitrite measurement of aqueous and protein containing sample. Meth Enzymol. 2002;359:158–168. doi: 10.1016/S0076-6879(02)59180-1. [DOI] [PubMed] [Google Scholar]
  • 10.Roe J.H., Kuther C.A. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of dehydro ascorbic acid. J Biol Chem. 1943;147:399–401. [Google Scholar]
  • 11.Bergmeyer H.U., Bernt E. Glutamate oxaloacetate transaminase; Glutamate oxaloacetate transaminase. In: Bergmeyer H.U., editor. Methods of Enzymatic Analysis. New York: Academic Press; 1963. pp. 837–853. [Google Scholar]
  • 12.Linhardt K., Walter K. Phosphatase. In: Bergmeyer H.U., editor. Methods of Enzymatic Analysis. New York: Academic Press; 1963. p. 799. [Google Scholar]
  • 13.Gowelock AH. In: Varley’s Practical Clinical Biochemistry, 6th edn. Heinemann Prfessional Publishing. 1988; p. 519.
  • 14.Das S.K., Vasudevan D.M. Monitoring Oxidative Stress in Patients With Non-alcoholic and Alcoholic Liver Diseases. Ind J Clin Biochem. 2005;20(2):24–28. doi: 10.1007/BF02867396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Beutler E., Duron O., Kelly B.M. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61:882–888. [PubMed] [Google Scholar]
  • 16.Sinnhuber R.O., Yu T.C., Yu T.C. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–630. [Google Scholar]
  • 17.Pinto R.E., Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J. 1969;112:109–115. doi: 10.1042/bj1120109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
  • 19.Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J Lab Clin Med. 1967;70:158–159. [PubMed] [Google Scholar]
  • 20.Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectro photometric method for the determination of the superoxide dismutase activity in tissue extract. J Biochem. 1986;154:536–541. doi: 10.1016/0003-2697(86)90026-6. [DOI] [PubMed] [Google Scholar]
  • 21.Tussey L., Felder M.R. Tissue-specific genetic variation in the level of mouse alcohol dehydrogenase is controlled transcriptionally in kidney and posttranscriptionally in liver. Proc Natl Acad Sci U S A. 1989;86:5903–5907. doi: 10.1073/pnas.86.15.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Das S.K., Vasudevan D.M. Biochemical diagnosis of alcoholism. Ind J Clin Biochem. 2005;20(1):35–42. doi: 10.1007/BF02893039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Baraona E., Lieber C.S. Effects of alcohol on hepatic transport of proteins. Ann Rev Med. 1982;33:281–292. doi: 10.1146/annurev.me.33.020182.001433. [DOI] [PubMed] [Google Scholar]
  • 24.Halliwell B., Gutteridge J.M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986;246(2):501–514. doi: 10.1016/0003-9861(86)90305-X. [DOI] [PubMed] [Google Scholar]
  • 25.Plaa G.L., Witschi H. Chemicals, drugs and lipid peroxidation. Ann Rev Pharmacol Toxicol. 1976;16:125–141. doi: 10.1146/annurev.pa.16.040176.001013. [DOI] [PubMed] [Google Scholar]
  • 26.Videla L.A., Iturriaga H., Pino M.E., Bunout D., Valenzuela A., Ugarte G. Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of the abstinence and liver necrosis. Clin Sci. 1984;66:283–290. doi: 10.1042/cs0660283. [DOI] [PubMed] [Google Scholar]
  • 27.Kono Y., Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982;257:5751–5754. [PubMed] [Google Scholar]
  • 28.Das S.K., Vasudevan D.M. Effect of ethanol on liver antioxidant defense systems: a dose dependent study. Ind J Clin Biochem. 2005;20(1):80–84. doi: 10.1007/BF02893047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rockey D.C., Shah V. Nitric oxide biology and the liver: Report of an AASLD research workshop. Hepatol. 2004;39:250–257. doi: 10.1002/hep.20034. [DOI] [PubMed] [Google Scholar]
  • 30.Lelkes P.I., Hahn K.L., Sukovich D.A., Karmiol S., Schmidt D.H. On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol. 1998;454:295–310. doi: 10.1007/978-1-4615-4863-8_35. [DOI] [PubMed] [Google Scholar]
  • 31.Pearlman J.D., Hibberd M.G., Chuang M.L., Harada K., Lopez J.J., Gladstone S.R., et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med. 1995;1:1085–1089. doi: 10.1038/nm1095-1085. [DOI] [PubMed] [Google Scholar]
  • 32.Shih S.C., Mullen A., Abrams K., Mukhopadhyay D., Claffey K.P. Role of protein kinase C isoforms in phormol esterinduced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem. 1999;274:15407–15414. doi: 10.1074/jbc.274.22.15407. [DOI] [PubMed] [Google Scholar]
  • 33.Suganthalakshmi B., Anand R., Kim R., Mahalakshmi R., Karthikprakash S., Namperumalsamy P., Sundaresan P. Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis. 2006;12:336–341. [PubMed] [Google Scholar]
  • 34.Namiecinska M., Marciniak K., Nowak J.Z. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Higieny i Medycyny Dooewiadczalnej. 2005;59:573–583. [PubMed] [Google Scholar]
  • 35.Tilg H., Diehl A.M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343:1467–1476. doi: 10.1056/NEJM200011163432007. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES