Skip to main content
Journal of Digital Imaging logoLink to Journal of Digital Imaging
. 2000 Feb;13(1):38–45. doi: 10.1007/BF03168339

Diagnostic accuracy of film-based, TIFF, and wavelet compressed digital temporomandibular joint images

Christopher J Trapnell 1, William C Scarfe 1,, Jeff H Cook 1, Anibal M Silveira 1, Frederick J Regennitter 1, Bruce S Haskell 1
PMCID: PMC3453426  PMID: 10696600

Abstract

The purpose of this research was to determine if digitization and the application of various compression routines to digital images of temporomandibular joint (TMJ) radiographs would diminish observer accuracy in the detection of specific osseous characteristics associated with TMJ degenerative joint disease (DJD). Nine observers viewed 6 cropped hard-copy radiographic films each of 34 TMJs (17 radiographic series). Regions of interest measuring 2 in × 2 in were digitized using an 8-bit scanner with transparency adapter at 300 dpi. The images were placed into a montage of 6 images and stored as tagged image file format (TIFF), compressed at 4 levels (25∶1, 50∶1, 75∶1, and 100∶1) using a wavelet algorithm, and displayed to the observers on a computer monitor. Their observations regarding condylar faceting, sclerosis, osteophyte formation, erosion, and abnormal shape were analyzed using ROC. Kappa values were determined for relative condylar size and condylar position within the glenoid fossa. Indices were compared using ANOVA at a significance level ofP<.05. Although significant and substantial observer variability was demonstrated, there were no statistically significant differences between image modalities, except for condylar position, in which TIFF and wavelet (at all compression ratios) performed better than the original image. For faceting, wavelet 100∶1 performed better than radiographic film images. Little actual image file reduction was achieved at compression ratios above 25∶1.

Key words: temporomandibular joint, radiography, images, compression, diagnostic accuracy, wavelet

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

References

  • 1.American Association of Orthodontists: Guidelines for Quality Assessment of Orthodontic Care. St Louis, MO, American Association of Orthodontists, 1988
  • 2.Laskin DM. Establishing standards of care. Am J Orthod Dentofac Orthop. 1988;93:171–171. doi: 10.1016/0889-5406(88)90296-X. [DOI] [Google Scholar]
  • 3.Lipton JA, Raymond AD. National Institutes of Health technology assessment conference on the management of temporomandibular disorders, Bethesda, MD, April 29–May 1, 1996. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:49–183. doi: 10.1016/S1079-2104(97)90090-1. [DOI] [PubMed] [Google Scholar]
  • 4.Talley RL, Murphy GJ, Smith SD, et al. Standards for the history, examination, diagnosis, and treatment of temporomandibular disorders (TMD): A position paper. American Academy of Head, Neck and Facial Pain. Cranio. 1990;8:60–77. doi: 10.1080/08869634.1990.11678302. [DOI] [PubMed] [Google Scholar]
  • 5.American Academy of Pediatric Dentistry Treatment of temporomandibular disorders in children: Summary statements and recommendations. J Am Dent Assoc. 1990;120:265–269. [PubMed] [Google Scholar]
  • 6.Atchison KA, Luke LS, White SC. An algorithm for ordering pretreatment orthodontic radiographs. Am J Orthod Dentofac Orthop. 1992;102:29–44. doi: 10.1016/0889-5406(92)70012-Y. [DOI] [PubMed] [Google Scholar]
  • 7.McNeill C, editor. Temporomandibular disorders: Guidelines for classification, assessment, and management. ed 2. Chicago, IL: Quintessence Publishing; 1993. Temporomandibular disorders: Assessment; pp. 61–71. [Google Scholar]
  • 8.Pullinger AG, White SC. Efficacy of TMJ radiographs in terms of expected versus actual findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:367–374. doi: 10.1016/S1079-2104(05)80231-8. [DOI] [PubMed] [Google Scholar]
  • 9.Dahlstrom L, Lindvall AM. Assessment of temporomandibular joint disease by panoramic radiology: Reliability and validity in relation to tomography. Dentomaxillofac Radiol. 1996;25:197–201. doi: 10.1259/dmfr.25.4.9084273. [DOI] [PubMed] [Google Scholar]
  • 10.Brooks SL, Brand JW, Gibbs SJ, et al. Imaging of the temporomandibular joint: A position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:609–618. doi: 10.1016/S1079-2104(97)90128-1. [DOI] [PubMed] [Google Scholar]
  • 11.Eraso FE, Scarfe WC, Hayakawa Y, et al. Teledentistry: Protocols for the transmission of digitized radiographs of the temporomandibular joint. J Telemed Telecare. 1996;2:217–223. doi: 10.1258/1357633961930103. [DOI] [PubMed] [Google Scholar]
  • 12.Erickson BJ, Manduca A, Persons KR, et al. Evaluation of irreversible compression of digitized posterior-anterior chest radiographs. J Digit Imaging. 1997;10:97–101. doi: 10.1007/BF03168595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Grap A. An Introduction to wavelets. IEEE Comp Sci Engineer. 1995;2:50–61. doi: 10.1109/99.388960. [DOI] [Google Scholar]
  • 14.Strang G. Wavelets. American Scientist. 1994;82:250–255. [Google Scholar]
  • 15.Kaiser G. A friendly guide to wavelets. Boston, MA: Birkhauser; 1994. pp. 44–45. [Google Scholar]
  • 16.Goldberg MA, Pivovarov M, Mayo-Smith WW. Application of wavelet compression to digitized radiographs. AJR. 1994;163:462–468. doi: 10.2214/ajr.163.2.8037051. [DOI] [PubMed] [Google Scholar]
  • 17.Jonsson A, Laurin S, Karner G. Spatial resolution requirements in digital radiography of scaphoid fractures. An ROC analysis. Acta Radiol. 1996;37:555–560. doi: 10.1177/02841851960373P226. [DOI] [PubMed] [Google Scholar]
  • 18.Goldberg MA, Gazelle GS, Boland GW. Focal hepatic lesions: Effect of three dimensional wavelet compression on detection at CT. Radiology. 1997;202:159–165. doi: 10.1148/radiology.202.1.8988206. [DOI] [PubMed] [Google Scholar]
  • 19.Pilgram TK, Slone RM, Muka E, et al. Perceived fidelity of compressed and reconstructed radiological images: A preliminary exploration of compression, luminance, and viewing distance. J Digit Imaging. 1998;11:176–181. doi: 10.1007/BF03178079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Savcenko V, Erickson BJ, Palisson PM, et al. Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology. 1998;206:609–616. doi: 10.1148/radiology.206.3.9494474. [DOI] [PubMed] [Google Scholar]
  • 21.Ricke J, Maass P, Lopez Hanninen E, et al. Wavelet versus JPEG (joint photographic expert group) and fractal compression. Impact on the detection of low-contrast details in computed radiographs. Invest Radiol. 1998;33:456–463. doi: 10.1097/00004424-199808000-00006. [DOI] [PubMed] [Google Scholar]
  • 22.Maldjian JA, Liu WC, Hirschorn D. Wavelet transformbased image compression for transmission of MR data. AJR. 1997;169:23–26. doi: 10.2214/ajr.169.1.9207495. [DOI] [PubMed] [Google Scholar]
  • 23.Wenzel A, Gotfredsen E, Borg E, et al. Impact of lossy image compression on accuracy of caries detection in digital images taken with a storage phosphor system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:351–355. doi: 10.1016/S1079-2104(96)80336-2. [DOI] [PubMed] [Google Scholar]
  • 24.Sanderink GCH, Dula K, Huiskens R, et al. et al. The loss of image quality in digital panoramic radiography using image compression. In: Farman AG, Ruprecht A, Gibbs SJ, et al.et al., editors. Advances in Maxillofacial Imaging. Amsterdam, The Netherlands: Elsevier; 1997. pp. 299–305. [Google Scholar]
  • 25.http://www.zdnet.com/vlabs/tests/monitors/17-19in-ch.html PC Magazine 17 to 19-inch Monitor Tests, downloaded April 17, 1999
  • 26.Swets JA, Pickett RM. Evaluation of Diagnostic Systems: Methods From Signal Detection Theory. New York, NY: Academic; 1982. [Google Scholar]
  • 27.Metz CE. Methodology in Radiologic Imaging. Invest Radiol. 1986;21:720–733. doi: 10.1097/00004424-198609000-00009. [DOI] [PubMed] [Google Scholar]
  • 28.Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310. [DOI] [PubMed] [Google Scholar]
  • 29.Ellingsen MA, Hollender LG, Harrington GW. Rachovisiography versus conventional radiography for detection of small instruments in endodontic length determination. II. In vivo evaluation. J Endod. 1995;21:516–520. doi: 10.1016/S0099-2399(06)80525-X. [DOI] [PubMed] [Google Scholar]
  • 30.Scarfe WC, Fana CJ, Farman AG. Radiographic detection of accessory/lateral canals: Use of Radio Visio Graphy and Hypaque. J Endod. 1995;21:185–190. doi: 10.1016/S0099-2399(06)80563-7. [DOI] [PubMed] [Google Scholar]
  • 31.Moystad A, Svanes DB, Larheim TA, et al. Effect of image magnification of digitized bitewing radiographs on approximal caries detection: An in vitro study. Dentomaxillofac Radiol. 1995;24:255–259. doi: 10.1259/dmfr.24.4.9161171. [DOI] [PubMed] [Google Scholar]
  • 32.Svanaes DB, Moystad A, Risnes S, et al. Intraoral storage phosphor radiography for approximal caries detection and effect of image magnification: Comparison with conventional radiography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:94–100. doi: 10.1016/S1079-2104(96)80385-4. [DOI] [PubMed] [Google Scholar]
  • 33.Versteeg CH, Sanderink GC, Lobach SR, et al. Reduction in size of digital images: Does it lead to less detectability or loss of diagnostic information? Dentomaxillofac Radiol. 1998;27:93–96. doi: 10.1038/sj.dmfr.4600329. [DOI] [PubMed] [Google Scholar]
  • 34.Wenzel A, Grondahl H-G. Direct digital radiography in the dental office. Int Dent J. 1995;45:27–34. [PubMed] [Google Scholar]
  • 35.Uchida K, Takizawa M, Wada T, et al. Liquid crystal displays for the evaluation of dental x-ray images: An ROC analysis of observer performance. Oral Radiol. 1999;15:1–7. doi: 10.1007/BF02489751. [DOI] [Google Scholar]
  • 36.Moystad A, Svanaes DB, Larheim TA, et al. The effect of cathode ray tube display format on observer performance in dental digitized radiography: Comparison with plain films. Dentomaxillofac Radiol. 1994;23:206–210. doi: 10.1259/dmfr.23.4.7835525. [DOI] [PubMed] [Google Scholar]
  • 37.Nishikawa K, Kuroyanagi K, et al. Luminance dependency of delectability of CRT display. In: Farman AG, Ruprecht A, Gibbs SJ, et al., editors. IADMFR/CMI’97 Advances in Maxillofacial Imaging. Amsterdam, The Netherlands: Elsevier; 1997. pp. 293–298. [Google Scholar]
  • 38.Ludlow JB, Abreu MJ. Performance of film, desktop monitor, and laptop displays in caries detection. Dentomaxillofac Radiol. 1999;28:26–30. doi: 10.1038/sj.dmfr.4600400. [DOI] [PubMed] [Google Scholar]
  • 39.Cederberg RA, Frederiksen NL, Benson BW, et al. Effect of different background lighting conditions on diagnostic performance of digital and film images. Dentomaxillofac Radiol. 1998;27:293–297. doi: 10.1038/sj.dmfr.4600377. [DOI] [PubMed] [Google Scholar]
  • 40.Guidance for the content and review of 510k notifications for picture archiving and communications systems (PACS) and related devices. Rockville, MD: Food and Drug Administration; 1993. [Google Scholar]
  • 41.Lyriboz TA, Zukoski MJ, Hopper KD, et al. A comparison of wavelet and joint photographic experts lossy compression methods applied to medical images. J Digit Imaging. 1999;12(suppl 1):14–17. doi: 10.1007/BF03168745. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Digital Imaging are provided here courtesy of Springer

RESOURCES