Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2008 Oct 1;23(3):223–226. doi: 10.1007/s12291-008-0050-2

RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress

Gauri S Vahalkar 1, Vijaya A Haldankar 1,
PMCID: PMC3453436  PMID: 23105758

Abstract

Glyco-oxidation is considered as a source of permanent, cumulative, oxidative damage to long lived proteins in ageing and in diabetes. Although RBC depends solely on glucose for energy purpose, hyperglycemic state glycosylates hemoglobin, creates oxidative stress and puts the cellular components at risk. In view of this, RBC membrane composition was analyzed in diabetic patients. The results were compared with healthy age and sex matched control groups. When RBC membrane components such as protein, sialic acid, phospholipids and cholesterol were determined in insulin dependent diabetes mellitus, a significant rise in phospholipids and cholesterol and significant fall in sialic acid and protein content was noted. RBC membrane composition showed pronounced alterations in insulin dependent diabetes mellitus. These changes were accompanied by higher levels of lipid peroxidation products like Malondialdehyde.

Key words: Insulin dependent diabetes mellitus, RBC Membrane composition, Protein and Lipids, Lipid peroxidation

Full Text

The Full Text of this article is available as a PDF (119.5 KB).

References

  • 1.Berlet B., Stadtman E. Protein oxidation in aging, Disease and oxidative stress. The American Society for Biochemistry and Molecular Biology, Inc. 1997;272:20313–20316. doi: 10.1074/jbc.272.33.20313. [DOI] [PubMed] [Google Scholar]
  • 2.Oberley L.W. Free radicals and diabetes. Free Rad Biol Med. 1999;5:113–124. doi: 10.1016/0891-5849(88)90036-6. [DOI] [PubMed] [Google Scholar]
  • 3.Emily H., Tammy M.B. Antioxidants, NFKB Activation and Diabetogenesis. Expt Biol Med. 1999;222:205–213. doi: 10.1046/j.1525-1373.1999.d01-137.x. [DOI] [PubMed] [Google Scholar]
  • 4.Colman P.G., Wang L., Lafferty K.J. Molecular biology and autoimmunity of type I diabetes mellitus. In: Drazini B., Melmed S., Lepoith D., editors. Molecular and Cellular Biology of Diabetes Mellitus. Insulin secretion. New York: Alan R. Liss Inc; 1989. pp. 125–137. [Google Scholar]
  • 5.Gerbitz K.D. Does the mitochondrial DNA play a role in the pathogenesis of diabetes? Diabetologia. 1992;35:1181–1186. doi: 10.1007/BF00401375. [DOI] [PubMed] [Google Scholar]
  • 6.Jain S.K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem. 1989;264:21340–21345. [PubMed] [Google Scholar]
  • 7.Mohandas N., Chasis J.A. Red blood cells deformability, membrane material properties and shape, regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993;30:171–178. [PubMed] [Google Scholar]
  • 8.Stadtman E.R., Levine R.L. Protein Oxidation. Ann NY Acad Sci. 2000;899:199–208. doi: 10.1111/j.1749-6632.2000.tb06187.x. [DOI] [PubMed] [Google Scholar]
  • 9.Chiu D., Kuypers F., Lubin B. Lipid peroxidation in human red cells. Semin Hematol. 1989;25:257–276. [PubMed] [Google Scholar]
  • 10.Shinar E., Rachmilewitz E. Oxidative denaturation of Red Blood Cells in thalassemia. Semin Hematol. 1990;27:70–82. [PubMed] [Google Scholar]
  • 11.Kuross S., Hebbel R. Nonheme iron in sickle erythrocyte membranes; association with phospholipid and potential role in lipid peroxidation. Blood. 1988;72:1278–1285. [PubMed] [Google Scholar]
  • 12.Folch J., Lees M., Sloane G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509. [PubMed] [Google Scholar]
  • 13.Allain C.C., Poon L.S., Chan C.S. Enzymatic determination of total serum cholesterol. Clin Chim Acta. 1974;20:470–475. [PubMed] [Google Scholar]
  • 14.Takayama M., Itoh S., Nagasaki T., Tanimizu I. A new enzymatic method for determination of serum phospholipids. Clin Chim Acta. 1977;79(1):93–98. doi: 10.1016/0009-8981(77)90465-X. [DOI] [PubMed] [Google Scholar]
  • 15.Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 16.Warren L.Method for estimation of total bound Nacetylneuraminic acid Clin Chem 1975214121112053 [Google Scholar]
  • 17.Stocks J., Dormandy T.L. The auto-oxidation of human red cell lipids induced by hydrogen peroxide. Brit J Haemat. 1971;20:95–111. doi: 10.1111/j.1365-2141.1971.tb00790.x. [DOI] [PubMed] [Google Scholar]
  • 18.Sevanian A., Kim E. Phopholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Rad Biol Med. 1985;1:263–271. doi: 10.1016/0748-5514(85)90130-8. [DOI] [PubMed] [Google Scholar]
  • 19.Stadtman E.R., Levine R.L. Protein Oxidation. Ann NY Acad Sci. 2000;899:199–208. doi: 10.1111/j.1749-6632.2000.tb06187.x. [DOI] [PubMed] [Google Scholar]
  • 20.Sharpe P.C., Liu W.H., Yue K.K.M., Dorothy M., Catherwood M.A., McGinty A.M., et al. Glucose induced oxidative stress in vascular contractile cells: comparison of aortic smooth muscle cells and retinal pericytes. Diabetes. 1998;47:801–809. doi: 10.2337/diabetes.47.5.801. [DOI] [PubMed] [Google Scholar]
  • 21.Adewoye E.O., Akinlade K.S., Olorunsogo O.O. Erythrocyte membrane protein alteration in diabetics. East Afr Med J. 2001;78(8):438–440. doi: 10.4314/eamj.v78i8.8998. [DOI] [PubMed] [Google Scholar]
  • 22.Chiu D., Lubin B., Shonet S. Erythrocyte membrane lipid reorganization during sickling process. Br J Haematol. 1979;41:223–234. doi: 10.1111/j.1365-2141.1979.tb05851.x. [DOI] [PubMed] [Google Scholar]
  • 23.Haest C.W.M., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978;509:21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  • 24.Ricther C. Biophysical consequences of lipid-peroxidation in membranes. Chem Phys Lipids. 1987;44:175–189. doi: 10.1016/0009-3084(87)90049-1. [DOI] [PubMed] [Google Scholar]
  • 25.Lubin B., Chiu D., Bastaky J., Roelafsen B., Deenen L.L.M. Oxidative hemoglobin denaturation and RBC destruction. Semin Haematol. 1989;26:128–135. [PubMed] [Google Scholar]
  • 26.Child P. Molecular species composition of membrane phosphatidylcholine influences the rate of cholesterol efflux from human erythrocytes & vesicles of erythrocytes lipids. Biochim Biophys Acta. 1985;814(22):237–246. doi: 10.1016/0005-2736(85)90441-9. [DOI] [PubMed] [Google Scholar]
  • 27.Daniels C.K., Goldstein D.B. Movement of free cholesterol from lipoprotein on lipid vesicles into erythrocytes. Acceleration by ethanol in vitro. Molecular Pharmacology. 1982;21:694–700. [PubMed] [Google Scholar]
  • 28.Mazzanti L., Rabani R.A., Salvolini E., Tesei M., Martareli D., Venerando B., et al. Sialic acid, diabetes, and aging: a study on the erythrocyte membrane. Metabolism. 1977;46:59–61. doi: 10.1016/S0026-0495(97)90168-2. [DOI] [PubMed] [Google Scholar]
  • 29.Forte P., Copland M., Smith L.M., Miline F., Sutherland J., Benjamin N. Basic nitric oxide synthesis in essential hypertension. Lancet. 1997;22(3499055):837–842. doi: 10.1016/S0140-6736(96)07631-3. [DOI] [PubMed] [Google Scholar]
  • 30.Venerando B., Fiorilli A., Croci G., Tringali C., Goi G., Mazzanti L., et al. Acidic and neutral sialidase in the erythrocyte membrane of type II diabetic patients. Blood. 2002;99:1064–1070. doi: 10.1182/blood.V99.3.1064. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES