Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2008 Oct 1;23(3):209–217. doi: 10.1007/s12291-008-0048-9

Malnutrition-inflammation-atherosclerosis syndrome in Chronic Kidney disease

Pragna Rao 1, G C Reddy 1, A S Kanagasabapathy 1,2,
PMCID: PMC3453445  PMID: 23105756

Abstract

Chronic kidney disease is becoming a major health problem globally and in India an alarming number of about 8 million people are suffering from this disease. Patients undergoing hemodialysis have a high prevalence of protein-energy malnutrition and inflammation. As these two conditions often occur concomitantly in hemodialysis patients, they have been referred together as ‘malnutrition-inflammation-atherosclerosis syndrome’ to emphasize the important association with atherosclerotic cardiovascular disease. The three factors related to the pathophysiology in these patients are dialysis related nutrient loss, increased protein catabolism and hypoalbuminemia. Inflammation in Chronic Kidney disease is the most important factor in the genesis of several complications in renal disease. Pro-inflammatory cytokines like IL-1 and TNF-alpha play a major role in the onset of metabolic alterations in Chronic Kidney disease patients. Atherosclerosis is a very frequent complication in uremia due to the coexistence of hypertension, hyperhomocysteinemia, inflammation, malnutrition and increased oxidative stress, generation of advanced glycation end products, advanced oxidation protein products, hyperlipidemia and altered structural and functional ability of HDL. LDL-cholesterol, apolipoprotein (A), apolipoprotein (B), and Lp(a) are also associated with atherosclerosis. Studies have now provided enormous data to enable the evaluation of the severity of malnutrition-inflammation-atherosclerosis syndrome as well as effective monitoring of these patients.

Key words: Chronic Kidney Disease, Hemodialysis, Malnutrition, Inflammation, Atherosclerosis, Syndrome

Full Text

The Full Text of this article is available as a PDF (336.0 KB).

References

  • 1.National Kidney Foundation, K/DOQI Clinical practice guidelines for chronic kidney disease Evolution, classification and stratification. Am J Kidney Dis. 2002;39:s46–s75. doi: 10.1053/ajkd.2002.30943. [DOI] [PubMed] [Google Scholar]
  • 2.Massry SG, Richard J, Glassok. Text book of nephrology, 4th ed, 2001;1221–1222.
  • 3.Agarwal S.K., Dash S.C., Irshad M., Raju S., Singh R., Pandey R.M. Prevalence of Chronic Renal Failure in adults in Delhi, India. Nephrol Dial Transplant. 2005;20:1638–1642. doi: 10.1093/ndt/gfh855. [DOI] [PubMed] [Google Scholar]
  • 4.Lim V.S. Thyroid function in patients with chronic renal failure. Proceedings of the second international congress on uremic research, Nasa, Japan 2001: Metabolic dysfunction in uremia. Am J Kidney Dis. 2001;38:580–584. doi: 10.1053/ajkd.2001.27410. [DOI] [PubMed] [Google Scholar]
  • 5.Chung S.H., Lindholm B., Lee H.B. Influence of initial nutritional status on continuous ambulatory peritoneal dialysis patient survival. Perit Dial Int. 2000;20:19–26. [PubMed] [Google Scholar]
  • 6.Stenvinkel P., Heimbürger O., Lindholm B., Kaysen G.A., Bergström J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation, and atherosclerosis (MIA syndrome) Nephrol Dial Transplant. 2000;15:953–960. doi: 10.1093/ndt/15.7.953. [DOI] [PubMed] [Google Scholar]
  • 7.Sullivan A.J., Laroson J.A., Chan M., Kelly J.J. Body composition and energy metabolism in chronic renal insufficiency. Am J Kidney Dis. 2002;39:369–375. doi: 10.1053/ajkd.2002.30558. [DOI] [PubMed] [Google Scholar]
  • 8.Roelfrema V., Clark R.G. The growth hormone and insulin like growth factor axis. It’s manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol. 2001;12:1297–1306. doi: 10.1681/ASN.V1261297. [DOI] [PubMed] [Google Scholar]
  • 9.Goodman H.M., Tai L.R., Ray J., Cooke N.E., Liebhaber S.A. Human growth hormone variant produces insulin-like lipolytic responses in rat adipose tissue. Endocrinol. 1991;129:1779–1783. doi: 10.1210/endo-129-4-1779. [DOI] [PubMed] [Google Scholar]
  • 10.Bárány P., Eriksson L.C., Hultcrantz R., Pettersson E., Bergström J. Serum ferritin and tissue iron in anemic dialysis patients. Miner Electrolyte Metab. 1997;23:273–276. [PubMed] [Google Scholar]
  • 11.Mitch W.E. Insights into the abnormalities of chronic renal disease attributed to malnutrition. Pathophysiology of chronic renal failure and complications. J Am Soc Nephrol. 2002;13:s22–s27. doi: 10.1159/000047786. [DOI] [PubMed] [Google Scholar]
  • 12.Odamaki M., Furuya R., Yoneyama T., Nishikino M., Hibi I., Miyaji K., et al. Association of serum leptin concentration with weight loss in chronic hemodialysis patients. Am J Kidney Dis. 1999;33:361–368. doi: 10.1016/S0272-6386(99)70313-6. [DOI] [PubMed] [Google Scholar]
  • 13.Ikizler T.A., Wingard R.L., Sun M., Harvell J., Parker R.A., Hakim R.M. Increased energy expenditure in hemodialysis patients. J Am Soc Nephrol. 1996;7:2646–2653. doi: 10.1681/ASN.V7122646. [DOI] [PubMed] [Google Scholar]
  • 14.Yaker S., Liu J., Roith D. The growth hormone/insulin like growth factor spectrum: Implications for organ growth and development. Pediatric Nephrol. 2000;14:544–549. doi: 10.1007/s004670000363. [DOI] [PubMed] [Google Scholar]
  • 15.Jacob V., Carpentier J.E., Salzano S., Naylor V., Wild G., Brown C.B., et al. IGF-1, a marker of under nutrition in hemodialysis patients. Am J Clin Nutr. 1990;52:39–44. doi: 10.1093/ajcn/52.1.39. [DOI] [PubMed] [Google Scholar]
  • 16.Kopple J.D., Swendseid M.E., Shinaberger J.H., Umezawa C.Y. The free and bound amino acid removed by hemodialysis. Tran Anm Soc Artif Inter Organs. 1973;19:309–313. doi: 10.1097/00002480-197301900-00052. [DOI] [PubMed] [Google Scholar]
  • 17.Kopple J.D. Pathophysiology of protein-energy wasting in chronic renal failure. J Nutr. 1994;129:s147–s251. doi: 10.1093/jn/129.1.247S. [DOI] [PubMed] [Google Scholar]
  • 18.Alfonso Martin Cueto Manzano. Hypoalbuminemia in dialysis patients. A malnutrition or an inflammatory marker? La Revista de Investigation Clinica. 2001;52:152–158. [PubMed] [Google Scholar]
  • 19.Moshage H.J., Janssen J.A., Franssen J.H., Hafkenscheid J.C., Yap S.H. Study of the molecular mechanisms of decreased liver synthesis of albumin in inflammation. J Clin Invest. 1987;79:1635–1641. doi: 10.1172/JCI113000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Luger A., Kovarik J., Stummvoll H.K., Urbanska A., Luger T.A. Blood membrane interaction in hemodialysis leads to increased cytokine production. Kidney Int. 1987;32:84–88. doi: 10.1038/ki.1987.175. [DOI] [PubMed] [Google Scholar]
  • 21.Ikzler T.A., Hakin R.M. Nutrition in end-stage renal disease. Kidney Int. 1996;50:343–357. doi: 10.1038/ki.1996.323. [DOI] [PubMed] [Google Scholar]
  • 22.Blackburn G.L., Thornton P.A. Nutritional assessment of the hospitalized patients. Med Clin North Am. 1979;63:1103–1115. [PubMed] [Google Scholar]
  • 23.Klahr S., Levey A.S., Beck G.J., Caggiula A.W., Hunsicker L., Kusek J.W., et al. The effects of dietary protein restriction and blood control on the progression of renal disease: Modification of diet in renal disease study group. N Engl J Med. 1994;330:877–884. doi: 10.1056/NEJM199403313301301. [DOI] [PubMed] [Google Scholar]
  • 24.Mears A. Outcomes of continuous process improvement of a nutritional care program incorporating serum pre-albumin measurements. Nutrition. 1996;12:479–484. doi: 10.1016/S0899-9007(96)91721-9. [DOI] [PubMed] [Google Scholar]
  • 25.Chertow G.M., Ackert K., Lew N.L., Lazarus J.M., Lowrie E.G. Pre-albumin is as important as albumin in the nutritional assessment of hemodialysis patients. Kidney Int. 2000;58:2512–2517. doi: 10.1046/j.1523-1755.2000.00435.x. [DOI] [PubMed] [Google Scholar]
  • 26.Bologa R.M., Levine D.M., Parker T.S., Cheigh J.S., Serur D., Stenzel K.H., et al. Interleukin-6 predicts Hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis. 1998;32:107–114. doi: 10.1053/ajkd.1998.v32.pm9669431. [DOI] [PubMed] [Google Scholar]
  • 27.Qureshi A.R., Alvestrand A., Divino-Filho J.C., Gutierrez A., Heimbürger O., Lindholm B., et al. Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J Am Soc Nephrol. 2002;13(Suppl1):S28–S36. [PubMed] [Google Scholar]
  • 28.Poole S., Bird T.A., Selkirk S., Gaines-Das R.E., Choudry Y., Stephenson S.L., et al. Fate of injected interleukin-1 in rats: sequestration and degradation in the kidney. Cytokine. 1990;2:416–422. doi: 10.1016/1043-4666(90)90050-4. [DOI] [PubMed] [Google Scholar]
  • 29.Descamps-Latscha B., Herbelin A., Nguyen A.T., Roux-Lombard P., Zingraff J., Moynot A., et al. Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationship with activation markers of T-cells, B-cells, and monocytes. J Immunol. 1995;154:882–892. [PubMed] [Google Scholar]
  • 30.Schindler R., Boenisch O., Fischer C., Frei U. Effect of the hemodialysis membrane on the inflammatory reaction in vivo. Clin Nephrol. 2000;53:452–459. [PubMed] [Google Scholar]
  • 31.Miyata T., Hori O., Zhang J., Yan S.D., Ferran L., Iida Y., et al. The receptor for advanced glycation end products(RAGE) is a central mediator of the interaction AGE-beta 2 microglobulin with human mononuclear phagocytes via an oxidant sensitive pathway: Implications for the pathogenesis of dialysis-related amyloidosis. Clin Invest. 1996;98:1088–1094. doi: 10.1172/JCI118889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Stenvinkel P. Inflammation in end-stage renal disease: could it be treated? Nephrol dial therapy. 2002;17:33–38. doi: 10.1093/ndt/17.suppl_8.33. [DOI] [PubMed] [Google Scholar]
  • 33.Hotchkies R.S., Karl I.E. The Pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–150. doi: 10.1056/NEJMra021333. [DOI] [PubMed] [Google Scholar]
  • 34.Bergstron J., Wang T., Limdholm B. Factors contributing to catabolism in end-stage renal disease patients. Mineral Eletrolyte metab. 1998;24:92–101. doi: 10.1159/000057355. [DOI] [PubMed] [Google Scholar]
  • 35.Witko-Sarsat V., Friedlander M., Nguyen Khoa T., Capeillère-Blandin C., Nguyen A.T., Canteloup S., et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol. 1998;161:2524–2532. [PubMed] [Google Scholar]
  • 36.Pastan S., Soucie J.M., McClellan W.M. Vascular access and increased risk of death among hemodialysis patients. Kidney Int. 2002;62:620–626. doi: 10.1046/j.1523-1755.2002.00460.x. [DOI] [PubMed] [Google Scholar]
  • 37.Schindler R., Linnenweber S., Schulze M., Oppermann M., Dinarello D.A., Shaldon S., et al. Gene expression of Interleukin-1 beta during hemodialysis. Kidney Int. 1993;43:712–721. doi: 10.1038/ki.1993.102. [DOI] [PubMed] [Google Scholar]
  • 38.Choy E.H.S., Panayi G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907–916. doi: 10.1056/NEJM200103223441207. [DOI] [PubMed] [Google Scholar]
  • 39.Garibotto G., Russo R., Sofia A., Sala M.R., Robaudo C., Moscatelli P., et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int. 1994;45:1432–1439. doi: 10.1038/ki.1994.187. [DOI] [PubMed] [Google Scholar]
  • 40.Guarnieri G., Toigo G., Fiotti N., Ciocchi B., Situlin R., Giansante C., et al. Mechanism of malnutrition in uremia. Kidney Int. 1997;62:s41–s44. [PubMed] [Google Scholar]
  • 41.Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Clin nutr Metab. 2002;5:377–383. doi: 10.1097/00075197-200207000-00005. [DOI] [PubMed] [Google Scholar]
  • 42.Charles A. D. Interleukin-1: A pro-inflammatory cytokine, inflammation, basic principles and clinical correlates. 3. Philadelphia: Lippincott Williams and Wilkins; 1999. [Google Scholar]
  • 43.Schindler R., Clark B.D., Dinarello C.A. Disassociation between interleukin-1β m RNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem. 1990;265:10232–10237. [PubMed] [Google Scholar]
  • 44.Schindler R., Eichert F., Lepenies J., Frei U. Blood components influence cytokine induction by bacterial substances. Blood Purif. 2001;19(4):380–387. doi: 10.1159/000046968. [DOI] [PubMed] [Google Scholar]
  • 45.Miller L.C., Isa S., Vannier E., Georgilis K., Steere A.C., Dinarello C.A. Live Borrelia burgdorferi preferentially activate IL-1β gene expression and protein synthesis over the interleukin-1 receptor antagonist. J Clin Invest. 1992;90:906–912. doi: 10.1172/JCI115966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Haichao W., Kevin J. T. Inflammation: Basic principles and clinical correlates. 3. Philadelphia: Lippincott Williams and Wilkins; 1999. Tumor necrosis factor, Interleukin-6, Macrophage Migration Inflammatory Factor, and Macrophage Inflammatory protein-1 in inflammation. [Google Scholar]
  • 47.Barton B.E. IL-6. insights into novel biological activities. Clin Immunol Immunopathol. 1997;85:16–20. doi: 10.1006/clin.1997.4420. [DOI] [PubMed] [Google Scholar]
  • 48.Weiss G., Meusburger E., Radacher G., Garimorth K., Neyer U., Mayer G. Effect of iron treatment on circulating cytokine levels in ESRD patients receiving recombinant human erythropoietin. Kidney Int. 2003;64:572–578. doi: 10.1046/j.1523-1755.2003.00099.x. [DOI] [PubMed] [Google Scholar]
  • 49.Mastorakos G., Chrousos Q.P., Weber J.S. Cachectin/tumor necrosis factor regulates hepatic acute phase gene expression. J Clin Invest. 1986;78:1349–1354. doi: 10.1172/JCI112721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. Effects of interleukin-6 and leukemia inhibitory factor on the acute phase response and DNA synthesis in cultured rat hepatocytes. Lymphokine Cytokine Res. 1991;10:23–26. [PubMed] [Google Scholar]
  • 51.Tracey K.J. Tumor necrosis factor (cachectin) in the biology of septic shock syndrome. Circ Shock. 1991;35:123–128. [PubMed] [Google Scholar]
  • 52.Kumins N.H., Hunt J., Gamelli R.L., Filkins J.P. Partial hepatectomy reduces the endotoxin-induced peak circulating levels of tumor necrosis factor in rats. Shock. 1989;338:225–228. doi: 10.1097/00024382-199605000-00012. [DOI] [PubMed] [Google Scholar]
  • 53.Lindner A., Charra B., Sherrard D.J., Scribner B.H. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974;290:697–701. doi: 10.1056/NEJM197403282901301. [DOI] [PubMed] [Google Scholar]
  • 54.Jungers P., Massy Z.A., Nguyen Khoa T., Fumeron C., Labrunie M., Lacour B., et al. Incidence and risk factors of atherosclerotic cardiovascular accidents in predialysis chronic renal failure patients: a prospective study. Nephrol Dial Transplant. 1997;12:2597–2602. doi: 10.1093/ndt/12.12.2597. [DOI] [PubMed] [Google Scholar]
  • 55.Moorhead J.F., Chan M.K., El-Nahas M., Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo interstitial disease. Lancet. 1982;2:1309–1311. doi: 10.1016/S0140-6736(82)91513-6. [DOI] [PubMed] [Google Scholar]
  • 56.Poole S., Bird T.A., Selkirk S., Gaines-Das R.E., Choudry Y., Stephenson S.L., et al. Fate of injected interleukin-1 in rats: sequestration and degradation in the kidney. Cytokine. 1990;2:416–422. doi: 10.1016/1043-4666(90)90050-4. [DOI] [PubMed] [Google Scholar]
  • 57.Klein J.B., Mc Leish K.R., Ward R.A. Transplantation, not dialysis corrects azotemia-dependent priming of the neutrophil oxidative burst. Am J Kidney Dis. 1999;33:483–491. doi: 10.1016/S0272-6386(99)70185-X. [DOI] [PubMed] [Google Scholar]
  • 58.Himmelfarb J., Stenvinkel P., Ikizler T.A., Hakim R.M. The elephant in uremia: oxidative stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–1528. doi: 10.1046/j.1523-1755.2002.00600.x. [DOI] [PubMed] [Google Scholar]
  • 59.Attman P.O., Samuelsson O., Alanpovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21:573–592. doi: 10.1016/s0272-6386(12)80030-8. [DOI] [PubMed] [Google Scholar]
  • 60.Savdie E., Gibson J.C., Crawford G.A., Simons L.A., Mahony J.F. Impaired plasma triglyceride clearance as a feature of both uremic and post transplant triglyceridemia. Kidney Int. 1980;18:774–782. doi: 10.1038/ki.1980.196. [DOI] [PubMed] [Google Scholar]
  • 61.Arnadottir M., Thyssel H., Dallongeville J. Evidence that reduced lipoprotein lipase activity is not a primary pathogenetic factor for hyper triglyceridemia. Kidney Int. 1995;48:779–784. doi: 10.1038/ki.1995.350. [DOI] [PubMed] [Google Scholar]
  • 62.Arnadottir M., Thysell H., Dallongeville J., Fruchart J.C., Nilsson-Ehle P. Very low density lipoprotein of uremic patients is a poor substrate for bovine lipoprotein lipase in vitro. Metabolism. 1996;45:686–690. doi: 10.1016/S0026-0495(96)90132-8. [DOI] [PubMed] [Google Scholar]
  • 63.Packard C.J., Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol. 1995;17:3542–3556. doi: 10.1161/01.atv.17.12.3542. [DOI] [PubMed] [Google Scholar]
  • 64.Lenten B.J., Hama S.Y., Beer F.C., Stafforini D.M., McIntyre T.M., Prescott S.M., et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation, in aortic wall cell culture. J Clin Invest. 1995;96:2758–2767. doi: 10.1172/JCI118345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Pruzanski W., Stefanski E., Beer F.C., Beer M.C., Ravandi A., Kuksis A. Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins. J Lipid Res. 2000;41:1035–1047. [PubMed] [Google Scholar]
  • 66.März W., Beckmann A., Scharnagl H., Siekmeier R., Mondorf U., Held I., et al. Heterogenous lipoprotein (a) size isoforms differ by their interaction with the low density lipoprotein receptor and the low density lipoprotein receptor-related protein/ a2-macroglobulin receptor. FEBS Lett. 1993;325:271–275. doi: 10.1016/0014-5793(93)81087-G. [DOI] [PubMed] [Google Scholar]
  • 67.Scanu A.M. Lp(a) lipoprotein-coping with heterogeneity. New Eng J Med. 2003;349:2089–2090. doi: 10.1056/NEJMp038128. [DOI] [PubMed] [Google Scholar]
  • 68.Kronenberg F., Kuen E., Ritz E., Junker R., König P., Kraatz G., et al. Lipoprotein (a) serum concentrations and apolipoprotein (a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol. 2000;11:105–115. doi: 10.1681/ASN.V111105. [DOI] [PubMed] [Google Scholar]
  • 69.Gazzaruso C., Garzaniti A., Buscaglia P., Bonetti G., Falcone C., Fratino P., et al. Association between apolipoprotein (a) phenotypes and coronary heart disease at young age. J Am Coll Cardiol. 1999;33:157–163. [PubMed] [Google Scholar]
  • 70.Koch M., Kutkuhn B., Trenkwalder E., Bach D., Grabensee B., Dieplinger H., et al. Apolipoprotein B, fibrinogen, HDL cholesterol, and apolipoprotein (a) phenotypes predicts coronary artery disease in haemodialysis patients. J Am Soc Nephrol. 1997;8:1889–1898. doi: 10.1681/ASN.V8121889. [DOI] [PubMed] [Google Scholar]
  • 71.Palmieri V., Celentano A., Roman M.J., Simone G., Lewis M.R., Best L., et al. Fibrinogen and preclinical echocardiographic target organ damage. The strong heart study. Hypertension. 2001;38:1068–1074. doi: 10.1161/hy1101.095335. [DOI] [PubMed] [Google Scholar]
  • 72.Retterstol L., Kierulf P., Pedersen J.C., Bohn M., Bakken A., Erikssen J., et al. Plasma fibrinogen level and long-term prognosis in Norwegian middle-aged patients with previous myocardial infarction, A 10 year follows up study. J Intern Med. 2001;249:511–518. doi: 10.1046/j.1365-2796.2001.00837.x. [DOI] [PubMed] [Google Scholar]
  • 73.Yamada K., Miyahara Y., Hamaguchi K., Nakayama M., Nakano H., Nozaki O., et al. Immuno histochemical study of human advanced glycosylation end products (AGE) in chronic renal failure. Clin Nephrol. 1994;42:354–361. [PubMed] [Google Scholar]
  • 74.George A. K. Inflammation: Cause of vascular disease and malnutrition in dialysis patients. Semin Nephrol. 2004;24:431–436. doi: 10.1016/j.semnephrol.2004.06.009. [DOI] [PubMed] [Google Scholar]
  • 75.Robinson K., Gupta A., Dennis V., Arheart K., Chaudhary D., Green R., et al. Hyperhomocysteinemia confers an independent increased risk of atherosclerosis in end-stage renal disease and is closely linked to plasma folate and pyridoxine concentrations. Circulation. 1996;94:2743–2748. doi: 10.1161/01.cir.94.11.2743. [DOI] [PubMed] [Google Scholar]
  • 76.Stampfer M.J., Malinow M.R., Willett W.C., Newcomer L.M., Upson B., Ullmann D., et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA. 1992;268:877–881. doi: 10.1001/jama.268.7.877. [DOI] [PubMed] [Google Scholar]
  • 77.Harpel P.C., Chang V.T., Borth W. Homocysteine and other sulfhydral compounds enhance the binding of lipoprotein (a) to fibrin: A potential link between thrombosis, atherosclerosis, and sulfhydril compound metabolism. Proc Natl Acad Sci USA. 1992;89:10193–10197. doi: 10.1073/pnas.89.21.10193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Zadeh K.K., Mehrotra R., Fouque D., Kopple J.D. Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure. Semin Dial. 2005;17(6):455–465. doi: 10.1111/j.0894-0959.2004.17606.x. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES