Abstract
In this study, we compared the lipid profile and antioxidant enzymes of normal and diabetic subjects consuming two different types of oil as cooking medium. 70 normal, healthy subjects were taken as controls and 70 subjects with Type 2 diabetes were recruited in patient group. Each group was further subdivided into two subgroups of 35 subjects each, consuming coconut oil and sunflower oil respectively as cooking medium. Samples of blood were collected and analyzed for serum total cholesterol, triacylglycerols, and cholesterol in lipoprotein fractions. Total glutathione and glutathione peroxidase were measured in erythrocytes and superoxide dismutase in serum. Triacylglycerols, LDL and VLDL cholesterol levels were high in the diabetic subjects compared to the controls. Total glutathione and glutathione peroxidase values showed significant decrease in diabetic subjects as compared to the controls, while superoxide dismutase values showed significant difference between coconut oil consuming groups. Though lipid profile parameters and oxidative stress were high in Type 2 diabetic subjects compared to controls, no pronounced changes for these parameters were observed between the subgroups (coconut oil vs. sunflower oil).
Key Words: Type 2 diabetes, Lipid profile, Glutathione, Glutathione peroxidase, Superoxide dismutase
Full Text
The Full Text of this article is available as a PDF (132.5 KB).
References
- 1.Foster D.W. From glycogen to ketones and back. Diabetes. 1984;33:1188–1199. doi: 10.2337/diab.33.12.1188. [DOI] [PubMed] [Google Scholar]
- 2.Guillot E., Vaugelade P., Lemarchal P., Rerat A. Intestinal absorption and liver uptake of medium chain fatty acids in non-anaesthetized pigs. Br J Nutr. 1993;69:431–442. doi: 10.1079/BJN19930045. [DOI] [PubMed] [Google Scholar]
- 3.Tsuji H., Kasai M., Takeuchi H., Nakamura M., Okazaki M., Kondo K. Dietary medium- chain triglycerides suppress body fat accumulation in a double blind, controlled trial in healthy men and women. J Nutr. 2001;131:2853–2859. doi: 10.1093/jn/131.11.2853. [DOI] [PubMed] [Google Scholar]
- 4.Bach A.C., Babayan V.K. Medium-chain triglycerides: an update. Am J Clin Nutr. 1982;36:950–962. doi: 10.1093/ajcn/36.5.950. [DOI] [PubMed] [Google Scholar]
- 5.Kritchevsky D., Tepper S.A., Scott Wright S., Czarnecki S.K., Wilson T.A., Nicolosi R.J. Cholesterol vehicle in experimental atherosclerosis 24: avocado oil. J Am Coll Nutr. 2003;22:52–55. doi: 10.1080/07315724.2003.10719275. [DOI] [PubMed] [Google Scholar]
- 6.Nicholls S.J., Lundman P., Harmer J.A., Cutri B., Griffiths K.A., Rye K.A., et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. 2006;48:715–720. doi: 10.1016/j.jacc.2006.04.080. [DOI] [PubMed] [Google Scholar]
- 7.Lipoeto N.I., Agus Z., Oenzil F., Masrul M., Wattanapenpaiboon N., Wahlqvist M.L. Contemporary Minangkabau food culture in West Sumatra, Indonesia. Asia Pac J Clin Nutr. 2001;10:10–16. doi: 10.1046/j.1440-6047.2001.00201.x. [DOI] [PubMed] [Google Scholar]
- 8.Nevin K.G., Rajamohan T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin Biochem. 2004;37:830–835. doi: 10.1016/j.clinbiochem.2004.04.010. [DOI] [PubMed] [Google Scholar]
- 9.Muller H., Lindman A.S., Blomfeldt A., Seljeflot I., Pedersen J.I. A diet rich in coconut oil reduces diurnal postprandial variations in circulating plasminogen activator antigen and fasting Lipoprotein (a) compared with a diet rich in unsaturated fat in women. J Nutr. 2003;133:3422–3427. doi: 10.1093/jn/133.11.3422. [DOI] [PubMed] [Google Scholar]
- 10.Nevin K.G., Rajmohan T. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chem. 2006;99:260–266. doi: 10.1016/j.foodchem.2005.06.056. [DOI] [Google Scholar]
- 11.Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. URL: http://www.who.int/. Cited 7th Oct 2008.
- 12.Beutler E., Duron O., Kelly B.M. Improved Methods for the determination of Glutathione. J Lab Clin Med. 1963;61:882–888. [PubMed] [Google Scholar]
- 13.Paglia D.E., Valentine W.N. Studies on the qualitative and quantitative characterization of glutathione peroxidase. J Lab Clin Med. 1967;70:158–169. [PubMed] [Google Scholar]
- 14.Lawrence R.A., Burk R.F. Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun. 1976;71:952–958. doi: 10.1016/0006-291X(76)90747-6. [DOI] [PubMed] [Google Scholar]
- 15.Marklund S., Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- 16.Nandi A., Chatterjee I.B. Assay of superoxide dismutase activity in animal tissues. J Biosci. 1988;13:305–315. doi: 10.1007/BF02712155. [DOI] [Google Scholar]
- 17.Drabkins D.L., Austin J.H. Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem. 1932;98:719–733. [Google Scholar]
- 18.Grundy S.M. Small LDL, Atherogenic Dyslipidemia, and the Metabolic Syndrome. Circulation. 1997;95:1–4. doi: 10.1161/01.cir.95.1.1. [DOI] [PubMed] [Google Scholar]
- 19.Kawamura M., Heinecke J., Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low-density lipoprotein by a superoxide-dependent pathway. J Clin Invest. 1994;94:771–778. doi: 10.1172/JCI117396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Jialal I., Devaraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem. 1996;42:498–506. [PubMed] [Google Scholar]
- 21.Cox C., Mann J., Sutherland W., Chisholm A., Skeaff M. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels. J Lipid Res. 1995;36:1787–1795. [PubMed] [Google Scholar]
- 22.Mendis S., Kumarasunderam R. The effect of daily consumption of coconut fat and soya-bean fat on plasma lipids and lipoproteins of young normolipdemic men. Br J Nutr. 1990;63:547–552. doi: 10.1079/BJN19900141. [DOI] [PubMed] [Google Scholar]
- 23.Schwab U.S., Niskanen L.K., Maliranta H.M., Savolainen M.J., Kesaniemi Y.A., Uusitupa M.I. Lauric and palmitic acid-enriched diets have minimal impact on serum lipid and lipoprotein concentrations and glucose metabolism in healthy young women. J Nutr. 1995;125:466–473. doi: 10.1093/jn/125.3.466. [DOI] [PubMed] [Google Scholar]
- 24.Carlson T.L., Kottke B.A. Effect of coconut oil on plasma apo A-I levels in WHHL and NZW rabbits. Biochim Biophys Acta. 1991;1083:221–229. doi: 10.1016/0005-2760(91)90075-s. [DOI] [PubMed] [Google Scholar]
- 25.Becker N., Illingworth D.R., Alaupovic P., Connor W.E., Sundberg E.E. Effects of saturated, monounsaturated and w-6 polyunsaturated fatty acids on plasma lipids, lipoproteins and apoproteins in humans. Am J Clin Nutr. 1983;37:355–360. doi: 10.1093/ajcn/37.3.355. [DOI] [PubMed] [Google Scholar]
- 26.Vega G.L., Groszek E., Wolf R., Grundy S.M. Influence of polyunsaturated fats on composition of plasma lipoproteins and apolipoproteins. J Lipid Res. 1982;23:811–822. [PubMed] [Google Scholar]
- 27.Shepherd J., Packard C.J., Patsch J.R., Gotto A.M., Jr, Taunton O.D. Effects of dietary polyunsaturated and saturated fat on the properties of high density lipoproteins and the metabolism of apolipoprotein A-1. J Clin Invest. 1978;61:1582–1592. doi: 10.1172/JCI109078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Kumar P.D. The role of coconut and coconut oil in coronary heart disease in Kerala, South India. Trop Doct. 1997;27:215–217. doi: 10.1177/004947559702700409. [DOI] [PubMed] [Google Scholar]
- 29.Ronald R. Mechanisms of disease: Atherosclerosis - an inflammatory disease. N Engl J Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207. [DOI] [PubMed] [Google Scholar]
- 30.Chen J., Jawahar L.M. Role of oxidative stress in coronary heart disease. Ind Heart J. 2004;56:163–173. [PubMed] [Google Scholar]
- 31.Forsberg L., Faire U., Morgenstern R. Oxidative stress, human genetic variation and disease. Arch Biochem Biophys. 2001;389:84–93. doi: 10.1006/abbi.2001.2295. [DOI] [PubMed] [Google Scholar]
- 32.Ursini F., Maiorino M., Brigelius-Flohe R. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
- 33.Raes M., Michiels C., Remacle J. Comparative study of the enzymatic defense systems against oxygen-derived free radicals: the key role of glutathione peroxidase. Free Radic Biol Med. 1987;3:3–7. doi: 10.1016/0891-5849(87)90032-3. [DOI] [PubMed] [Google Scholar]
- 34.Weinbrenner T., Cladellas M., Cova M.I., Fito M., Tomas M., Senti M., et al. High oxidative stress in patients with stable coronary heart disease. Atherosclerosis. 2003;168:99–106. doi: 10.1016/S0021-9150(03)00053-4. [DOI] [PubMed] [Google Scholar]
- 35.Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratisl Lek Listy. 2000;101:541–551. [PubMed] [Google Scholar]
- 36.Hamanishi T., Furuta H., Kato H., Doi A., Tamai M., Shimomura H., et al. Functional variants in the Glutathione Peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes. 2004;53:2455–2460. doi: 10.2337/diabetes.53.9.2455. [DOI] [PubMed] [Google Scholar]
- 37.Abou Seif M.A., Youssef A.A. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346:161–170. doi: 10.1016/j.cccn.2004.03.030. [DOI] [PubMed] [Google Scholar]
- 38.Zitouni K., Nourooz-Zadeh J., Harry D., Kerry S.M., Betteridge D.J., Cappuccio F.P., et al. Race-specific differences in antioxidant enzyme activity in patients with Type 2 diabetes: a potential association with the risk of developing nephropathy. Diabetes Care. 2005;28:1698–1703. doi: 10.2337/diacare.28.7.1698. [DOI] [PubMed] [Google Scholar]
- 39.Eder E., Wacker M., Lutz U., Nair J., Fang X., Bartsch H., et al. Oxidative stress related DNA adducts in the liver of female rats fed with sunflower-, rapeseed-, olive- or coconut oil supplemented diets. Chemico-Biological Interactions. 2006;159:81–89. doi: 10.1016/j.cbi.2005.09.004. [DOI] [PubMed] [Google Scholar]
- 40.Sharma A., Kharb S., Chugh S.N., Kakkar R., Singh G.P. Evaluation of oxidative stress before and after control of glycemia and after vitamin E supplementation in diabetic patients. Metabolism. 2000;49:160–162. doi: 10.1016/S0026-0495(00)91117-X. [DOI] [PubMed] [Google Scholar]
- 41.Gil L., Siems W., Mazurek B., Gross J., Schroeder P., Voss P., et al. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res. 2006;40:495–505. doi: 10.1080/10715760600592962. [DOI] [PubMed] [Google Scholar]
- 42.Virgili F., Battistini N., Bini A., Vannini V., Tomasi A. Dietary fatty acids composition modulates oxidative stress and cellular injury in the liver of CBrCl3 intoxicated rats. Nutr Res. 1996;16:1679–1688. doi: 10.1016/0271-5317(96)00187-X. [DOI] [Google Scholar]
- 43.Bhatia S., Shukla R., Venkata Madhu S., Kaur Gambhir J., Madhava Prabhu K. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003;36:557–562. doi: 10.1016/S0009-9120(03)00094-8. [DOI] [PubMed] [Google Scholar]
