Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 1999 Jan;14(1):49–58. doi: 10.1007/BF02869151

The role of band 3 protein in oxygen delivery by red blood cells

Naotaka Hamasaki 1,
PMCID: PMC3453557  PMID: 23105202

Abstract

The synergistic effects of hemoglobin, carbonic anhydrase and the band 3 protein make red blood cells the ideal vehicle for oxygen delivering to the tissues. As long as oxygen is supplied by these ideal vehicles, oxygen intoxication of the tissues is precluded. Band 3 protein mediates the “Chloride-Shift”, i.e., the anion exchange of Cl/HCO3. Because of the Chloride-Shift, red blood cells are able to recognize metabolically active tissues and to supply the minimum amount of oxygen to the tissues. Investigation into the molecular mechanisms of the anion exchange mediated by the band 3 protein was introduced.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

References

  • 1.Landaw S.A. Factors that accelerate or retard red blood cell senescence. Blood Cells. 1988;14:47–52. [PubMed] [Google Scholar]
  • 2.Turrini F., Arese P., Yuan J., Low P.S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J. Biol. Chem. 1991;266:23611–23617. [PubMed] [Google Scholar]
  • 3.Beppu M., Ando K., Kikugawa K. Poly-N-accetyllactosaminyl saccharide chains of band 3 as determinants for ant-band 3 autoantibody binding to senescent and oxidized erythrocytes. Cell. Mol. Biol. 1996;42:1007–1024. [PubMed] [Google Scholar]
  • 4.Hamasaki N., Okubo K. Band 3 protein: physiology, function and structure. Cell. Mol. Biol. 1996;42:1025–1039. [PubMed] [Google Scholar]
  • 5.Wagner P.D. Diffusion and chemical reaction in pulmonary gas exchange. Physiol. Rev. 1977;57:257–312. doi: 10.1152/physrev.1977.57.2.257. [DOI] [PubMed] [Google Scholar]
  • 6.Wieth J.O., Anderson O.S., Brahm J., Bjerrum P.J., Borders C.L. Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites. Phil. Trans. R. Soc. Lond. B. 1982;299:383–399. doi: 10.1098/rstb.1982.0139. [DOI] [PubMed] [Google Scholar]
  • 7.Wieth J.O., Bjerrum P.J., Borders C.L. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 1982;79:283–312. doi: 10.1085/jgp.79.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Pharmacol. 1986;103:61–223. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  • 9.Nanri H., Hamasaki N., Minakami S. Affinity labeling of erythrocyte band 3 protein with pyridoxal 5-phosphate. Involvement of the 35,000-dalton fragment in anion transport. J. Biol. Chem. 1983;258:5985–5990. [PubMed] [Google Scholar]
  • 10.Hamasaki N., Matsuyama H., Hirota-Chigita C. Characterization of phosphoenolpyruvate transport acrosss the erythrocyte membrane. Evidence for involvement of band 3 in the transport system. Eur. J. Biochem. 1983;132:531–536. doi: 10.1111/j.1432-1033.1983.tb07394.x. [DOI] [PubMed] [Google Scholar]
  • 11.Means G.E., Feeney R.E. Chemical Modification of Proteins. San Francisco, USA.: Holden-Day, Inc.; 1971. [Google Scholar]
  • 12.Kawano Y., Hamasaki N. Isolation of a 5,300-dalton peptide containing a pyridoxal phosphate binding site from the 38,000-dalton domain of band 3 of human erythrocyte membranes. J. Biochem. (Tokyo) 1986;100:191–199. doi: 10.1093/oxfordjournals.jbchem.a121692. [DOI] [PubMed] [Google Scholar]
  • 13.Kawano Y., Okubo K., Tokunaga F., Miyata T., Iwanaga S., Hamasaki N. Localization of the pyridoxal phosphate binding site at the COOH-terminal region of erythrocyte band 3 protein. J. Biol. Chem. 1988;263:8232–8238. [PubMed] [Google Scholar]
  • 14.Bruce L.J., Kay M.M.B., Lawrence C., Tanner M.J.A. Band 3HT, a human redcell variant associated with acanthocytosis and increased anion transport, carries the mutation Pro-868-> Leu in the membrane domain of band 3. Biochem. J. 1993;293:317–320. doi: 10.1042/bj2930317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bruce L.J., Anstee D.J., Spring F.A., Tanner M.J.A. Band 3 Memphis variant II. Altered stilbene disulfonate binding and the Diego (Dia) blood group antigen are associated with the human erythrocyte band 3 mutation Pro-854->Leu. J. Biol. Chem. 1994;269:16155–16158. [PubMed] [Google Scholar]
  • 16.Cabantchik Z.I., Greger G. What do chemical probes tell us about anion transporters of mammalian cell membranes? Am. J. Physiol. (Cell Physiol) 1992;262:c803–c827. doi: 10.1152/ajpcell.1992.262.4.C803. [DOI] [PubMed] [Google Scholar]
  • 17.Cabantchik Z.I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 1974;15:207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  • 18.Jennings M.L., Passow H. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein and cross-linking of proteolytic fragments by 4,4′-diisothiocyano-dihydrostilbene-2,2′-disulfonate. Biochim. Biophs. Acta. 1979;554:498–519. doi: 10.1016/0005-2736(79)90387-0. [DOI] [PubMed] [Google Scholar]
  • 19.Okubo K., Kang D., Hamasaki N., Jennings M.L. Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonic acid) J. Biol. Chem. 1994;269:1918–1926. [PubMed] [Google Scholar]
  • 20.Passow H., Fasold H., Gartner M., Legrum B., Ruffing W., Zaki L. Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. NY. Acad. Sci. 1980;341:361–383. doi: 10.1111/j.1749-6632.1980.tb47184.x. [DOI] [PubMed] [Google Scholar]
  • 21.Wieth J.O., Bjerrum P.J. Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 1982;79:253–282. doi: 10.1085/jgp.79.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zaki L. Inhibition of anion transport across red blood with 1, 2-cyclohexanedione. Biophys. Res. Commun. 1981;99:243–251. doi: 10.1016/0006-291X(81)91738-1. [DOI] [PubMed] [Google Scholar]
  • 23.Jennings M.L., Anderson M.P. Chemical modification of glutamate residues at the stilbene disulphonate site of human red blood cell band 3 protein. J. Biol. Chem. 1987;262:1691–1697. [PubMed] [Google Scholar]
  • 24.Julien T., Zaki L. Studies on inactivation of anion transport in human red blood cell membrane by reversible and irreversible acting arginine-specific reagents. J. Membr. Biol. 1988;102:217–224. doi: 10.1007/BF01925715. [DOI] [PubMed] [Google Scholar]
  • 25.Matsuyama H., Kawano Y., Hamasaki N. Involvement of a histidine residue in inorganic phosphate and phosphoenolpyruvate transport across the human erythrocyte membrane. J. Biochem. (Tokyo) 1986;99:495–501. doi: 10.1093/oxfordjournals.jbchem.a135504. [DOI] [PubMed] [Google Scholar]
  • 26.Izuhara K., Okubo K., Hamasaki N. Conformational change of band 3 protein induced by diethyl pyrocarbonate modification in human erythrocyte ghosts. Biochemistry. 1989;28:4725–4728. doi: 10.1021/bi00437a032. [DOI] [PubMed] [Google Scholar]
  • 27.Hamasaki N., Izuhara K., Okubo K. Involvement of an intracellular histidine residue of band 3 in the conformational changes taking place during anion transport. In: Hamasaki N., Jennings M.L., editors. Anion Transport of the Red Blood Cell Membrane. Amsterdam: Elsevier Science Publishers B.V.; 1989. pp. 47–58. [Google Scholar]
  • 28.Hamasaki N., Okubo K., Kang D. Protein chemistry of the anion transport center of erythrocyte band 3. Progr. Cell Res. 1992;2:65–71. [Google Scholar]
  • 29.Muller-Berger S., Karbach D., Koning J., Lepke S., Wood P.G., Appelhans H., Passow H. Inhibition of mouse erythroid band 3-mediated chloride transport by site-directed mutagenesis of histidine residues and its reversal by second site mutation of Lys 558, the locus of covalent H2DIDS binding. Biochemistry. 1995;34:9315–9332. doi: 10.1021/bi00029a006. [DOI] [PubMed] [Google Scholar]
  • 31.Jennings M.L., Smith J.S. Anion-proton cotransport through the human red cell band 3 protein: role of glutamate 681. J. Biol. Chem. 1992;267:13964–13971. [PubMed] [Google Scholar]
  • 32.Lingappa V.R., Hegde R. Translocational pausings and the regulation of membrane protein biogenesis. In: Hamasaki N., Mihara K., editors. Membrane Proteins: Structure, Function and Expression Control. Fukuoka, Japan: Basel, Switzerland: Kyushu University Press; S. Karger, AG; 1997. pp. 93–100. [Google Scholar]
  • 33.Sakaguchi M. Topogenic sequences which regulate the integration and topology of membrane proteins in the endoplasmic reticulum membrane. In: Hamasaki N., Mihara K., editors. Membrane Proteins: Structure, Function and Expression Control. Fukuoka, Japan: Basel, Switzerland: Kyushu University Press; S. Karger, AG; 1997. pp. 101–116. [Google Scholar]
  • 34.Ota K., Sakaguchi M., Heijne G., Hamasaki N., Mihara K. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. Molec. Cell. 1998;2:495–503. doi: 10.1016/S1097-2765(00)80149-5. [DOI] [PubMed] [Google Scholar]
  • 35.Ota K., Sakaguchi M., Hamasaki N., Mihara K. Assessment of topogenic functions of anticipated transmembrane segments of human band 3. J. Biol. Chem. 1998;273:28286–28291. doi: 10.1074/jbc.273.43.28286. [DOI] [PubMed] [Google Scholar]
  • 36.Hamasaki, N., Kuma, H., Sakaguchi, M. and Mihara, K. (1998) A new concept in polytopic membrane proteins following from the study of band 3 protein. Biochem. Cell Biol. (in press). [DOI] [PubMed]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES