Abstract
In this study, we have examined the effect of linking of bloactive fragment of human IL-1β (163–171) or polytuftsin (PT, a synthetic polymer of natural immunomodulator “tuftsin”) with synthetic peptides of HIV on the induction of immune response to the synthetic peptides. A panel of synthetic peptides representing defined region of gp41, gp120 and gag were used as antigens. Immunomodulators linked peptides (i.e. peptide-IL-1β or peptide-PT) or peptide dimers were employed for immunization in Balb/c mice. Mice immunized with the peptide-immunomodulator develop effective T-cell proliferation,in vitro cytokine release and higher antibody production, but not with peptide dimers. We also found that peptide-immunomodulators induced high level of IgG2a antibody production. Furthermore, there was a positive correlation between the levels of cytokine (IL-2 & IFN-γ) and IgG isotype production. Thus it would appear that incorporation of IL-1β fragment or PT selectively enhances the Th1 type response to these peptides and may therefore be important for virus neutralization and clearance. However, the effect of IL-1β fragment was found to be more pronounced than polytuftsin. Such an approach may provide effective vaccination against other infectious diseases.
Key words: Human interleukin-1β, polytuftsin, Th-cells, cytokines, chimeric immunogens
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
References
- 1.Takeda A., Tuazon C.U., Ennis F.A. Antibody enhanced infection by HIV-I via FC receptor mediated entry. Science. 1988;242:580–584. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
- 2.Weinhold K.J., Lyerly H.K., Stanley S.D., Austain A.A., Mathews T.J., Bolognoesi D.P. HIV-I gp 120 mediated immune suppression and lymphocyte destruction in the absence of viral infection. J. Immunol. 1989;142:3091–3097. [PubMed] [Google Scholar]
- 3.Sinigaglia F., Guttinger M., Kilgus J., Doran B.M., Matile H., Etlinger H.M., Trzeciak A.D., Gillessen, Pink J.R.L. A malaria T-epitope recognized in association with most mouse and human MHC class-II molecules. Nature. 1988;336:778–780. doi: 10.1038/336778a0. [DOI] [PubMed] [Google Scholar]
- 4.Good M.F., Pombo D., Lunde M.N., Maloy W.L., Halenbeck R., Kolthes K., Miller L.H., Berzofsky J.J. Recombinant human IL-2 overcomes genetic non responsiveness to malaria sporozoite peptides: Correlation of effect with biological activity of IL-2. J. Immunol. 1988;141:972–977. [PubMed] [Google Scholar]
- 5.Antoni G., Presentini R., Perin F., Tagliabue A., Ghiara P., Censini S., Volpini G., Villa L., Borachi D. A short synthetic peptide fragment of human IL-1 with immunostimulatory but not inflammatory activity. J. Immunol. 1986;137:3201–3204. [PubMed] [Google Scholar]
- 6.Surkis R., Rubinrout D., Datan S., Tzehoral E., Fridkin M., Ben-Yoseph, Catano R.A. Potential precursor for slow release of the phagocytosis stimulating peptide tuftsin. Int. J. Biochem. 1990;22:193–195. doi: 10.1016/0020-711X(90)90183-4. [DOI] [PubMed] [Google Scholar]
- 7.Gokulan K., Tripathi S.P., Rao D.N. Advantage of dimeric peptide antigens in serodiagnosis of HIV-1 infection. Microbiol. Immunol. 1997;41:215–220. doi: 10.1111/j.1348-0421.1997.tb01193.x. [DOI] [PubMed] [Google Scholar]
- 8.Merrifield R.B. Solid phase peptide synthesis. J. Am. Chem. Soc. 1963;85:2149–2154. doi: 10.1021/ja00897a025. [DOI] [PubMed] [Google Scholar]
- 9.Khare S., Bhutani L.K., Rao D.N. Modulation of peripheral blood derived monocytes/macrophages from leprosy patients using “tuftsin” for production of reactive oxygen intermediates. Lepr. Rev. 1993;64:208–218. doi: 10.5935/0305-7518.19930023. [DOI] [PubMed] [Google Scholar]
- 10.Avrameas S., Ternynck T. The cross linking of proteins with glutaraldehyde and its use for the preparation of immunosorbents. Immunochem. 1969;6:43–47. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
- 11.Rao K.V.S., Nayak A.R. Enhanced immunogenicity of a sequence derived from hepatitis B virus surface antigen in a composite peptide that includes the immunstimulatory region from human IL-1. Proc. Natl. Acad. Sci. 1990;87:5519–5522. doi: 10.1073/pnas.87.14.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Frasca D., Boraschi D., Baschieri S., Bossu P., Tagliabue A., Adroini L., Doria G. In vivo restoration of T-cell function by human IL-1β or its 163–171 nona peptide in immunodepressed mice. J. Immunol. 1988;141:2651–2655. [PubMed] [Google Scholar]
- 13.Boraschi D., Ghiara P., Scapigluasi G., Villa L., Sette H., Tagliabue A. Binding and internalization of the 163–171 human IL-1β. Cytokines. 1992;4:201–204. doi: 10.1016/1043-4666(92)90056-W. [DOI] [PubMed] [Google Scholar]
- 14.Trudelle Y., Bracks A., Delmas A., Pedoussant S., Rivaille P. Synthesis of new carrier for immunization: polytuftsin. Int. J. Pep. Prot. Res. 1987;30:54–60. doi: 10.1111/j.1399-3011.1987.tb03312.x. [DOI] [PubMed] [Google Scholar]
- 15.Kumar P., Ivanov B., Kabilan L., Rao D.N. Construction of synthetic immunogen: use of the natural immunomodulator “polytuftsin” in malarial vaccine against RESA antigen ofPlasmodium falciparum. Vaccine. 1994;12:819–823. doi: 10.1016/0264-410X(94)90203-8. [DOI] [PubMed] [Google Scholar]
- 16.Devi G.R., Gokulan K., Rao D.N. Polytuftsin enhances the immunogenicity of peptide variants of circumsporozoite protein ofPlasmodium vivax. J Parasitic Dis. 1995;19:117–122. [Google Scholar]
- 17.Dhawan P., Nath I., Rao D.N. Polytuftsin: Its possible effects and mechanism during macrophage activation. Immunol. Letts. 1995;46:177–182. doi: 10.1016/0165-2478(95)00044-6. [DOI] [PubMed] [Google Scholar]
- 18.Snapper C.M., Paul W.E. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate IgG isotype production. Science. 1987;236:944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
- 19.Anderson P.M., Edwards K.W., Porch C.R., Insel R. Priming and induction ofHeamophilus influenza type b capsular antibodies in early infancy by gp 120 and oligosaccharide-protein conjugate vaccines. J. Pediatr. 1987;111:644–650. doi: 10.1016/S0022-3476(87)80237-8. [DOI] [PubMed] [Google Scholar]
- 20.Ey L.P., Prowse S.J., Jenkin C.R. Complement fixing IgG1 constitutes of new subclass of mouse IgG. Nature. 1979;281:492–495. doi: 10.1038/281492a0. [DOI] [PubMed] [Google Scholar]
- 21.Takayama K., Oslen M., Datt P., Hunter R.L. Adjuvant activity of non-ionic block copolymer. Vaccine. 1991;9:257–265. doi: 10.1016/0264-410X(91)90109-J. [DOI] [PubMed] [Google Scholar]
- 22.Hunter R., Olsen M., Buynitzky S. Studies on non-ionic block copolymer adjuvants IV. Effect of molecular weight of formulation on titre and isotype of antibody. Vaccine. 1991;9:250–256. doi: 10.1016/0264-410X(91)90108-I. [DOI] [PubMed] [Google Scholar]
- 23.Kalish M.L., Check I.J., Hunter R.L. Murine IgG isotype responses to thePlasmodium cynomolgi circumsporozotie peptide (NAGG)5 I. Effects of carrier, copolymer adjuvant and lipopolysaccharide on isotype selection. J. Immunol. 1991;146:3583–3590. [PubMed] [Google Scholar]
- 24.Schmitz J., Assenmacher M., Radburch A. Regulation of T-helper cell cytokine expression: Functional dichotomy of antigen presenting cells. Eur. J. Immunol. 1993;23:191–199. doi: 10.1002/eji.1830230130. [DOI] [PubMed] [Google Scholar]
- 25.Villa L., Tagliabue A., Borachi D. Metabolic behaviour and distribution of the synthetic nona peptide fragement 163–171 of human IL-β. Lymphokine Research. 1990;9:371–379. [PubMed] [Google Scholar]
