Abstract
Coronary Artery Disease is the major cause of mortality and morbidity worldwide. Traditional risk factors account for only half of the morbidity and mortality from coronary artery disease. There is substantial evidence that oxidative stress plays the major role in the atherosclerotic process. The present study was undertaken to evaluate the level of lipid peroxidation (by measuring malondialdehyde) and antioxidant enzymes (ceruloplasmin, glutathione, superoxide dismutase) in coronary artery disease. Serum malondialdehyde levels and serum ceruloplasmin levels were significantly raised in all the subgroups of study group as compared to control group (p<0.001). Whole blood glutathione levels and hemolysate superoxide dismutase activity was significantly decreased in all the subgroups of study group as compared to control group (p<0.001). Above results suggests that the patients of coronary artery disease show increased oxidative stress and decreased levels of antioxidant enzymes. So it is recommended that the management protocol for coronary artery disease patients should include antioxidant supplementation along with simultaneous lowering of lipid peroxidation.
Key Words: Coronary artery disease, Lipid peroxidation, Antioxidants, Ceruloplasmin
Full Text
The Full Text of this article is available as a PDF (49.1 KB).
References
- 1.Okuda M., Inoue N., Azumi H., Seno T., Sumi Y., Hirata K., et al. Expression of Glutardoxin in Human Coronary Arteries. Its potential role in antioxidant protection against atherosclerosis. Arterioscl Thromb Vasc Biol. 2001;21:1483–1495. doi: 10.1161/hq0901.095550. [DOI] [PubMed] [Google Scholar]
- 2.Sen C.K. Oxygen toxicity and antioxidants. Ind J Physiol Pharmacol. 1995;39(3):177–196. [PubMed] [Google Scholar]
- 3.Sainani G.S., Sawhney M.J., Sainani R.G. Oxidative stress: A key factor in the pathogenesis of chronic diseases. Med Update. 1997;7:1–5. [Google Scholar]
- 4.Das S., Yadav D., Narang R., Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci. 2002;83(4):488–491. [Google Scholar]
- 5.Ceconi C., Cargnoni A., Pasini E., Condorelli E., Curello S., Ferrari R. Lipid peroxidation during myocardial reperfusion. Mol Cell Biochem III. 1992;9:49–54. doi: 10.1007/BF00229573. [DOI] [PubMed] [Google Scholar]
- 6.Onvural B., Ozture H., Onvural A., Fadiloglu M. Lipid peroxidation and lipid metabolism in postmenopausal women. Turk Med Sci. 1998;28:519–524. [Google Scholar]
- 7.Jayakumari N., Ambikakumari V., Balakrishnan K.G., Iyer B.K. Antioxidant status in relation to free radical production during stable and unstable angina syndromes. Atherosclerosis. 1992;94:183–190. doi: 10.1016/0021-9150(92)90243-A. [DOI] [PubMed] [Google Scholar]
- 8.Tsukasa M., Sasaki J., Hiroshi K., Koichi H., Yoichi T., Akira M., et al. Serum glycoproteins and severity of Atherosclerosis. Am Heart J. 1995;129(2):234–238. doi: 10.1016/0002-8703(95)90003-9. [DOI] [PubMed] [Google Scholar]
- 9.Lamb D.J., Leake D.S. Acidic pH enables caeruloplasmin to catalyse the modification of low density lipoprotein. FEBS Lett. 1994;338(2):122–126. doi: 10.1016/0014-5793(94)80348-X. [DOI] [PubMed] [Google Scholar]
- 10.Fox P.L., Mazumdar B., Ehrenwald E., Mukhopadhyay C.K. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med. 2000;28(12):1735–1744. doi: 10.1016/S0891-5849(00)00231-8. [DOI] [PubMed] [Google Scholar]
- 11.Ward JR, Timothy JP. Free Radicals. In: Marshell WJ, Bangert SK, editors. Clinical biochemistry: metabolic and clinical aspects. Churchill Livingstone Publications 1995:766–771.
- 12.Elliot M, Braunwald E. Acute Myocardial Infarction. In: Braunwald E, Ziper DP, Libby P, Ponow RO, editors. Braunwald Zipes Libby Heart disease. A Textbook of Cardiovascular Medicine, 6th Edition. WB Sanuders Company, 2001:1114–1231.
- 13.Cannon CP, Braunwald E. Unstable Angina. In: Braunwald E, Ziper DP, Libby P, Ponow RO, editors. Braunwald Zipes Libby Heart disease. A Textbook of Cardiovascular Medicine, 6th Edition. WB Saunders Company, 2001:1231–1232.
- 14.Fringes C.S., Dunn R.T. A colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Pathol. 1970;53:89–91. doi: 10.1093/ajcp/53.1.89. [DOI] [PubMed] [Google Scholar]
- 15.Allain C.C., Poon L.S., Chan C.S., Richmond W., Fu P.C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20:470–475. [PubMed] [Google Scholar]
- 16.McGowan M.W., Artin J.D., Zak B. A peroxidase coupled method for the colorimetric determination of triglycerides. Clin Chem. 1983;29:538–542. [PubMed] [Google Scholar]
- 17.Lopes Virella M.F., Stone P., Ellis S., Colwell J.A. Cholesterol determination in high density lipoproteins separated by three different methods. Clin Chem. 1977;23:882–884. [PubMed] [Google Scholar]
- 18.Frieldewald W.T., Levy R.S., Friedricksen D.S. Estimation of concentration of low density lipoprotein cholesterol in plasma without rise of preparative ultracentrifuge. Clin Chem. 1972;18:499–502. [PubMed] [Google Scholar]
- 19.Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
- 20.Ravin H. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med. 1961;58:161–168. [PubMed] [Google Scholar]
- 21.Marklund S., Marklund G. Involvement of the superoxide anion radical in the auto-oxidation and a convenient assay for SOD. Eur J Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- 22.Lowry O.H., Rosebrough N.J., Fari A.L. Protein measurement with Folin reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 23.Beutler E., Duran O., Kelly B.M. Improved method of determination of blood glutathione. J Lab Clin Med. 1963;61:882–888. [PubMed] [Google Scholar]
- 24.Panichi V., Taccola D., Rizza M.G., Consani C., Migliori M., Filipi C., et al. Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol. 2004;17:715–720. [PubMed] [Google Scholar]
- 25.Engsrom G., Lind P., Hedblad B., Stavenow L., Janzon L., Lindgrade E. Effects of cholesterol and inflammation sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation. 2002;105:2632–2637. doi: 10.1161/01.CIR.0000017327.69909.FF. [DOI] [PubMed] [Google Scholar]
- 26.Holovet P., Vanhaecke J., Janssens S., Werf F.V., Collen D. Oxidised LDL and malondialdehyde modified LDL in patients with acute coronary syndromes and stable CAD. Circulation. 1998;98:1487–1494. doi: 10.1161/01.cir.98.15.1487. [DOI] [PubMed] [Google Scholar]
- 27.Mendis S., Sobotka P.A., Legna F.L., Euler D.E. Breath pentane and plasma lipid peroxides in ishaemic heart disease. Free Radic Biol Med. 1995;19:679–684. doi: 10.1016/0891-5849(95)00053-Z. [DOI] [PubMed] [Google Scholar]
- 28.Cavalca V., Cighetti G., Bamonti F., Loaldi A., Bortone L., Novembrino C., et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem. 2001;47(5):887–892. [PubMed] [Google Scholar]
- 29.Loeper J., Goy J., Rozensztajn L., Bedu O., Moisson P. Lipid peroxidation and protective enzymes during myocardial infarction. Clin Chim Acta. 1991;196(2–3):119–126. doi: 10.1016/0009-8981(91)90064-J. [DOI] [PubMed] [Google Scholar]
- 30.Tamer L., Sucu N., Polat G., Ercan B., Aytacoglu B., Yucebilgic G., et al. Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res. 2002;33(3):257–260. doi: 10.1016/S0188-4409(01)00381-2. [DOI] [PubMed] [Google Scholar]
- 31.Handan A.K., Nevbahar T., Habyf S., Dyngyloglo T.N., Kultursay H., Bayinder O., et al. Plasma lipid peroxides, Vitamin E, Superoxide dismutase and glutathione alterations in coronary atherosclerosis. Turk Med Sci. 1996;26:11–15. [Google Scholar]
- 32.Ferrari R., Ceconi C., Curello S., Guarnieri C., Caldarera C.M., Albertini A., et al. Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol. 1985;17:937–945. doi: 10.1016/S0022-2828(85)80074-2. [DOI] [PubMed] [Google Scholar]
- 33.Landmesser U., Merten R., Spiekermann S., Buttner K., Drexler H., Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease. Circulation. 2000;101:2264–2279. doi: 10.1161/01.cir.101.19.2264. [DOI] [PubMed] [Google Scholar]
- 34.Julicher R., Tijburg L., Sterrenberg L., Bast A., Koomen J., Noordhoek J. Decreased defense against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion. Life Sci. 1984;35:1281–1288. doi: 10.1016/0024-3205(84)90099-7. [DOI] [PubMed] [Google Scholar]