Abstract
Mouse neuroblastoma Neuro-2A cells have been cultured in a chemically defined serum-free medium consisting of a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium, supplemented with 30 nM selenite and 10 micrograms of transferrin per ml. In this medium, which does not contain any externally added polypeptide growth factor, cells proliferate rapidly with a doubling time of approximately equal to 10 hr. During exponential growth in this serum-free medium, Neuro-2A cells secrete a 15- to 20-kDa transforming growth factor with strong mitogenic action and the ability to induce anchorage-independent growth on nontransformed cells. This neuroblastoma-derived transforming growth factor (ND-TGF) is acid and heat stable but is sensitive to treatment with trypsin or dithiothreitol. However, it does not compete with epidermal growth factor (EGF) for receptor binding and does not require EGF receptors for its mitogenic activity. Experiments on the effects of EGF on ND-TGF-induced soft agar growth of normal rat kidney cells indicate that Neuro-2A cells secrete an EGF-potentiated TGF in addition to ND-TGF. It is suggested that Neuro-2A cells can proliferate in the absence of externally added growth factors as a result of autocrine production of polypeptide growth factors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agy P. C., Shipley G. D., Ham R. G. Protein-free medium for C-1300 mouse neuroblastoma cells. In Vitro. 1981 Aug;17(8):671–680. doi: 10.1007/BF02628402. [DOI] [PubMed] [Google Scholar]
- Anzano M. A., Roberts A. B., Meyers C. A., Komoriya A., Lamb L. C., Smith J. M., Sporn M. B. Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res. 1982 Nov;42(11):4776–4778. [PubMed] [Google Scholar]
- Assoian R. K., Komoriya A., Meyers C. A., Miller D. M., Sporn M. B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983 Jun 10;258(11):7155–7160. [PubMed] [Google Scholar]
- Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
- Boonstra J., Mummery C. L., van Zoelen E. J., van der Saag P. T., de Laat S. W. Monovalent cation transport during the cell cycle (review). Anticancer Res. 1982 Sep-Oct;2(5):265–273. [PubMed] [Google Scholar]
- Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Childs C. B., Proper J. A., Tucker R. F., Moses H. L. Serum contains a platelet-derived transforming growth factor. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5312–5316. doi: 10.1073/pnas.79.17.5312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan P. L., Topp W. C., Ozanne B. Simian virus 40 induces the production of a polypeptide transforming factor(s). Virology. 1981 Jan 30;108(2):484–490. doi: 10.1016/0042-6822(81)90455-4. [DOI] [PubMed] [Google Scholar]
- Marquardt H., Todaro G. J. Human transforming growth factor. Production by a melanoma cell line, purification, and initial characterization. J Biol Chem. 1982 May 10;257(9):5220–5225. [PubMed] [Google Scholar]
- Moses H. L., Branum E. L., Proper J. A., Robinson R. A. Transforming growth factor production by chemically transformed cells. Cancer Res. 1981 Jul;41(7):2842–2848. [PubMed] [Google Scholar]
- Mummery C. L., van den Brink S., van der Saag P. T., de Laat S. W. Screening for cytotoxicity in neuroblastoma cells. I. Dependence of growth inhibition on the presence of serum. Toxicol Lett. 1983 Sep;18(3):201–209. doi: 10.1016/0378-4274(83)90094-2. [DOI] [PubMed] [Google Scholar]
- Prasad K. N. Differentiation of neuroblastoma cells in culture. Biol Rev Camb Philos Soc. 1975 May;50(2):129–165. doi: 10.1111/j.1469-185x.1975.tb01055.x. [DOI] [PubMed] [Google Scholar]
- Proper J. A., Bjornson C. L., Moses H. L. Mouse embryos contain polypeptide growth factor(s) capable of inducing a reversible neoplastic phenotype in nontransformed cells in culture. J Cell Physiol. 1982 Feb;110(2):169–174. doi: 10.1002/jcp.1041100210. [DOI] [PubMed] [Google Scholar]
- Rizzino A., Orme L. S., De Larco J. E. Embryonal carcinoma cell growth and differentiation. Production of and response to molecules with transforming growth factor activity. Exp Cell Res. 1983 Jan;143(1):143–152. doi: 10.1016/0014-4827(83)90116-7. [DOI] [PubMed] [Google Scholar]
- Todaro G. J., De Larco J. E., Fryling C., Johnson P. A., Sporn M. B. Transforming growth factors (TGFs): properties and possible mechanisms of action. J Supramol Struct Cell Biochem. 1981;15(3):287–301. doi: 10.1002/jsscb.1981.380150306. [DOI] [PubMed] [Google Scholar]
- Todaro G. J., Fryling C., De Larco J. E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5258–5262. doi: 10.1073/pnas.77.9.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Laat S. W., Boonstra J., Moolenaar W. H., Mummery C. L., van der Saag P. T., van Zoelen E. J. Cation transport and growth control in neuroblastoma cells in culture. Prog Clin Biol Res. 1982;91:211–236. [PubMed] [Google Scholar]
- de Laat S. W., van der Saag P. T. The plasma membrane as a regulatory site in growth and differentiation of neuroblastoma cells. Int Rev Cytol. 1982;74:1–54. doi: 10.1016/s0074-7696(08)61168-7. [DOI] [PubMed] [Google Scholar]
- van Zoelen E. J., van der Saag P. T., de Laat S. W. Family tree analysis of a transformed cell line and the transition probability model for the cell cycle. Exp Cell Res. 1981 Feb;131(2):395–406. doi: 10.1016/0014-4827(81)90243-3. [DOI] [PubMed] [Google Scholar]
