Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2005 Jul;20(2):131–135. doi: 10.1007/BF02867412

Catalase: A repertoire of unusual features

Prashen Chelikani 1,, T Ramana 3, T M Radhakrishnan 3
PMCID: PMC3453835  PMID: 23105545

Abstract

Catalases are antioxidant enzymes which catalyze the breakdown of hydrogen peroxide to water and oxygen, and are one of the oldest enzymes to be studied biochemically. The first crystal structure of a catalase appeared in the year 1980 and it revealed the tetrameric nature of the enzyme and presence of channels accessing the deeply buried active site heme. An interesting feature of the tetrameric structure is the characteristic interweaving or arm exchange of the subunits. The recent elucidation of the crystal structure of transport proteins (porins, aquaporins) showed that these proteins are also tetrameric in nature and posses channels. However, recent specific investigations focusing on the roles for these channels, in the mechanism of enzyme action of catalases, revealed significant similarities with that observed for the transport of water and/or glycerol, in aquaporins.

Keywords: Aquaporins, Catalases, Channels

Full Text

The Full Text of this article is available as a PDF (583.6 KB).

References

  • 1.Yabuki M., Kariya S., Ishisaka R., Yasuda T., Yoshioka T., Horton A.A., Utsumi K. Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase. Free Radic. Biol. Med. 1999;26(3–4):325–332. doi: 10.1016/S0891-5849(98)00203-2. [DOI] [PubMed] [Google Scholar]
  • 2.Vuillaume M. Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res. 1987;186:43–72. doi: 10.1016/0165-1110(87)90014-5. [DOI] [PubMed] [Google Scholar]
  • 3.Halliwell B., Gutteridge J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Miyamoto T, Hayashi M., Takeuchi A., Okamoto T., Kawashima S., Takii T., Hayashi H., Onozaki K. Identification of a novel growth-promoting factor with a wide target cell spectrum from various tumor cells as catalase. J. Biochem. (Tokyo) 1996;120:725–730. doi: 10.1093/oxfordjournals.jbchem.a021471. [DOI] [PubMed] [Google Scholar]
  • 5.Gaetani G.F., Galiano S., Canepa L., Ferraris A.M., Kirkman H.N. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989;73(1):334–339. [PubMed] [Google Scholar]
  • 6.Nicholls P., Fita I., Loewen P.C. Enzymology and structure of catalases. Adv. Inorg. Chem. 2001;51:51–106. doi: 10.1016/S0898-8838(00)51001-0. [DOI] [Google Scholar]
  • 7.Bravo J., Verdaguer N., Tormo J., Betzel C., Switala J., Loewen P.C., Fita I. Crystal structure of catalase HPII fromEscherichia coli. Structure. 1995;5:491–502. doi: 10.1016/S0969-2126(01)00182-4. [DOI] [PubMed] [Google Scholar]
  • 8.Chelikani, P., Switala, J., Carpena, X., Fita, I., and Loewen, P.C. Covalently linked heme in catalases. In preparation.
  • 9.Murshudov G.N., Grebenko A.I., Barynin V., Dauter Z., Wilson K.S., Vainshtein B.K., et al. Structure of the heme d ofPenicillium vitale andEscherichia coli catalases. J. Biol. Chem. 1996;271:8863–8868. doi: 10.1074/jbc.271.15.8863. [DOI] [PubMed] [Google Scholar]
  • 10.Loewen P.C., Switala J., Ossowski I., Hillar A., Christie A., Tattrie B., et al. Catalase HPII ofEscherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry. 1993;32:10159–10164. doi: 10.1021/bi00089a035. [DOI] [PubMed] [Google Scholar]
  • 11.Sevinc M.S., Switala J., Bravo J., Fita I., Loewen P.C. Truncation and heme pocket mutations reduce production of functional catalase HPII inEscherichia coli. Protein Eng. 1998;11:549–555. doi: 10.1093/protein/11.7.549. [DOI] [PubMed] [Google Scholar]
  • 12.Bergdoll M., Remy M.H., Cagnon C., Masson J.M., Dumas P. Proline-dependent oligomerization with arm exchange. Structure. 1997;5(3):391–401. doi: 10.1016/S0969-2126(97)00196-2. [DOI] [PubMed] [Google Scholar]
  • 13.Ueda M., Kinoshita H., Maeda S.I., Zou W., Tanaka A. Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression. Appl. Microbiol. Biotechnol. 2003;61(5–6):488–494. doi: 10.1007/s00253-003-1251-5. [DOI] [PubMed] [Google Scholar]
  • 14.Andreoletti P., Sainz G., Jaquinod M., Gagnon J., Jouve H.M. High-resolution structure and biochemical properties of a recombinantProteus mirabilis catalase depleted in iron. Proteins. 2003;50:261–271. doi: 10.1002/prot.10283. [DOI] [PubMed] [Google Scholar]
  • 15.Chelikani P., Donald L.J., Duckworth H.W., Loewen P.C. Hydroperoxidase II ofEscherichia coli Exhibits Enhanced Resistance to Proteolytic Cleavage Compared to Other Catalases. Biochemistry. 2003;42:5729–5735. doi: 10.1021/bi034208j. [DOI] [PubMed] [Google Scholar]
  • 16.Chelikani P., Carpena X., Perez-Luque R., Donald L.J., Duckworth H.W., Switala J., Fita I., Loewen P.C. Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry. 2005;44:5597–5605. doi: 10.1021/bi047277m. [DOI] [PubMed] [Google Scholar]
  • 17.Switala J., O’Neil J.O., Loewen P.C. Catalase HPII fromEscherichia coli exhibits enhanced resistance to denaturation. Biochemistry. 1999;38:3895–3901. doi: 10.1021/bi982863z. [DOI] [PubMed] [Google Scholar]
  • 18.Murthy M.R.N., Reid T.J., Sicignano A., Tanaka N., Rossmann M.G. Structure of beef liver catalase. J. Mol. Biol. 1981;152:465–499. doi: 10.1016/0022-2836(81)90254-0. [DOI] [PubMed] [Google Scholar]
  • 19.Murshudov G.N., Melik-Adamyan W.R., Grebenko A.I., Barynin V.V., Vagin A.A., Vainshtein B.K., Dauter Z., Wilson K. Three-dimensional structure of catalase fromMicrococcus lysodeikticus at 1.5Å resolution. FEBS Lett. 1982;312:127–131. doi: 10.1016/0014-5793(92)80919-8. [DOI] [PubMed] [Google Scholar]
  • 20.Gouet P., Jouve H.M., Dideberg O. Crystal structure ofProteus mirabilis PR catalase with and without bound NADPH. J. Mol. Biol. 1995;249:933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
  • 21.Maté M.J., Zamocky M., Nykyri L.M., Herzog C., Alzari P.M., Betzel C., Koller F., Fita I. Structure of catalase-A fromSaccharomyces cerevisiae. J. Mol. Biol. 1999;286:135–139. doi: 10.1006/jmbi.1998.2453. [DOI] [PubMed] [Google Scholar]
  • 22.Putnam C.D., Arvai A.S., Bourne Y., Tainer J.A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 1999;296:295–309. doi: 10.1006/jmbi.1999.3458. [DOI] [PubMed] [Google Scholar]
  • 23.Vainshtein B.K., Melik-Adamyan W.R., Barynin V.V., Vagin A.A., Grebenko A.I. Three-dimensional structure of the enzyme catalase. Nature. 1981;293:411–412. doi: 10.1038/293411a0. [DOI] [PubMed] [Google Scholar]
  • 24.Bravo J., Maté M.J., Schneider T., Switala J., Wilson K., Loewen P.C., Fita I. Structure of catalase HPII fromEscherichia coli at 1.9 Å resolution. Proteins. 1999;34:155–166. doi: 10.1002/(SICI)1097-0134(19990201)34:2<155::AID-PROT1>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 25.Carpena X., Soriano M., Klotz M.G., Duckworth H.W., Donald L.J., Melik-Adamyan W., Fita I., Loewen P.C. Structure of the clade 1 catalase, CatF ofPseudomonas syringae, at 1.8 Å resolution. Proteins. 2003;50:423–436. doi: 10.1002/prot.10284. [DOI] [PubMed] [Google Scholar]
  • 26.Antonyuk S.V., Melik-Adamyan V.R., Popov A.N., Iamzin V.S., Hampstead P.D., Harrison P.M., Artymyuk P.J., Barynin V.V. Three-dimensional structure of the enzyme dimanganese catalase fromThermus Thermophilus at 1 Å resolution. Crystallogr. Reports. 2000;45:105–116. doi: 10.1134/1.171145. [DOI] [Google Scholar]
  • 27.Barynin V.V., Whittaker M.M., Antonyuk S.V., Lamzin V.S., Harrison P.M., Artymiuk P.J., Whittaker J.W. Crystal structure of manganese catalase fromLactobacillus plantarum. Structure. 2001;9:725–738. doi: 10.1016/S0969-2126(01)00628-1. [DOI] [PubMed] [Google Scholar]
  • 28.Noble Lectures 2003 (nobelprize.org/chemistry/laureates/2003/).
  • 29.Huang X., Holden H.M., Raushel F.M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 2001;70:149–180. doi: 10.1146/annurev.biochem.70.1.149. [DOI] [PubMed] [Google Scholar]
  • 30.Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J.B., Engel A., Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605. doi: 10.1038/35036519. [DOI] [PubMed] [Google Scholar]
  • 31.Chelikani P., Carpena X., Fita I., Loewen P.C. An electrical potential in the access channel of catalases enhances catalysis. J. Biol. Chem. 2003;278(33):31290–31296. doi: 10.1074/jbc.M304076200. [DOI] [PubMed] [Google Scholar]
  • 32.Fu D.X., Libson A., Miercke L.J.W., Weitzman C., Nollert P., Krucinski J., Stroud R.M. Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000;290:481–486. doi: 10.1126/science.290.5491.481. [DOI] [PubMed] [Google Scholar]
  • 33.Kalko S.G., Gelpi J.L., Fita I., Orozco M. Theoretical study of the mechanisms of substrate recognition by catalase. J. Amer. Chem. Soc. 2001;123:9665–9672. doi: 10.1021/ja010512t. [DOI] [PubMed] [Google Scholar]
  • 34.Amara P., Andreoletti P., Jouve H.M., Field M.J. Ligand diffusion in the catalase from Proteus mirabilis: A molecular dynamics study. Protein Sci. 2001;10:1927–1935. doi: 10.1110/ps.14201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Radhakrishnan T.M., Raghupathy E., Sarma P.S. The influence of chymotrypsin and pepsin on beef liver catalase and horse radish peroxidase. Ind. J. Chem. 1963;1:40–43. [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES