Abstract
Ethanol-induced liver injury may be linked, at least partly, to an oxidative stress resulting from increased free radical production and/or decreased antioxidant defence. Distinguishing alcoholic and non-alcoholic liver disease has important implications. This study looked at the possible changes between alcoholic and non-alcoholic liver diseases by examining the presence of oxidative damage, as monitored by several parameters relating to oxidative stress. Lipid peroxides concentration, superoxide dismutase activity and glutathione S-transferase activity increased, where as glutathione content, glutathione peroxidase activity and glutathione reductase activity decreased among the tested subjects in comparison to normal healthy group. Determination of these parameters may be valuable in the evaluation of liver disease. However, oxidative stress related enzymes and non-enzymes can not be utilized as a marker for alcoholic liver diseases, as these parameters responded in the same way after liver is damaged irrespective of their cause. Their level may help in determining the degree of liver damage. Degree of oxidative injury was similar in patients with non-alcoholic liver disease and in moderate drinkers; while significantly higher in heavy drinkers. The differences between the groups might be based on the type of liver pathological condition rather than its etiology (i.e. alcohol and non alcohol related causes).
Key Words: Alcohol, Oxidative stress, Glutathione, Superoxide dismutase, Lipid peroxide
Full Text
The Full Text of this article is available as a PDF (408.3 KB).
References
- 1.Fernandez-Checha J.C., Kaplowitz N., Colell A., Gracia-Ruiz C. Oxidative stress and alcoholic liver disease. Alcohol Health & Res World. 1997;21(4):321–324. [PMC free article] [PubMed] [Google Scholar]
- 2.Hagymasi K., Blazovics A., Lengyel G., Kocsis I., Feher J. Oxidative damage in alcoholic liver disease. Eur J Gastroenterol Hepatol. 2001;13(1):49–53. doi: 10.1097/00042737-200101000-00009. [DOI] [PubMed] [Google Scholar]
- 3.Ishii H., Kurose I., Kato S. Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol. 1997;12(9–10):272–82. doi: 10.1111/j.1440-1746.1997.tb00510.x. [DOI] [PubMed] [Google Scholar]
- 4.Irving MG, Halliday JW, Dowell LW. Association between alcoholism and increased hepatic iron stores. Alcoholism Clin Exp. 1988;12:7–13. doi: 10.1111/j.1530-0277.1988.tb00124.x. [DOI] [PubMed] [Google Scholar]
- 5.Paton A. Asking the right questions. In: Paton A., editor. ABC of Alcohol. London: BMJ Publishing Group, Tavistock square; 1994. pp. 14–14. [Google Scholar]
- 6.Kingsley G.R. The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med. 1942;27:840–845. [Google Scholar]
- 7.Kampen E.J., Zijlstra W.G. Determination of hemoglobin and its derivatives. Adv Clin Chem. 1965;8:141–187. doi: 10.1016/s0065-2423(08)60414-x. [DOI] [PubMed] [Google Scholar]
- 8.McCormick D.B., Greene H.L. Vitamin. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. USA: W.B. Saunders Company; 1998. pp. 1025–1025. [Google Scholar]
- 9.Sinnhuber R.O., Yu T.C., Yu T.C. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–630. [Google Scholar]
- 10.Beutler E., Duron O., Kelly B.M. Improved method for determination of blood glutathione. J. Lab. Clin. Med. 1963;61:882–888. [PubMed] [Google Scholar]
- 11.Beers R.F., Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxides by catalase. J. Biol. Chem. 1952;195:133–140. [PubMed] [Google Scholar]
- 12.Pinto R.E., Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem. J. 1969;112:109–115. doi: 10.1042/bj1120109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J. Lab. Clin. Med. 1967;70:158–159. [PubMed] [Google Scholar]
- 14.Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
- 15.Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectro photometric method for the determination of the superoxide dismutase activity in tissue extract. J. Biochem. 1986;154:536–541. doi: 10.1016/0003-2697(86)90026-6. [DOI] [PubMed] [Google Scholar]
- 16.Kornberg A., Horecker B.L. In: Methods in Enzymology. Colowick SP, Kaplan NO, editors. New York: Academic Press; 1955. pp. 739–739. [Google Scholar]
- 17.Das S.K., Nayak P., Vasudevan D.M. Biochemical Markers for Alcohol Consumption. Ind. J. Clin. Biochem. 2003;18(2):111–118. doi: 10.1007/BF02867376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Olinescu R., Alexandrescu R., Hulea S.A., Kummerow F.A. Tissue lipid peroxidation may be triggered by increased formation of bilirubinin vivo. Res. Commun. Chem. Pathol. Pharmacol. 1994;84(1):27–34. [PubMed] [Google Scholar]
- 19.Plaa G.L., Witschi H. Chemicals, drugs and lipid peroxidation. Ann. Rev. Pharmacol. Toxicol. 1976;16:125–141. doi: 10.1146/annurev.pa.16.040176.001013. [DOI] [PubMed] [Google Scholar]
- 20.Videla L.A., Iturriaga H., Pino M.E., Bunout D., Valenzuela A., Ugarate G. Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of the abstinence and liver necrosis. Clin. Sci. 1984;66:283–290. doi: 10.1042/cs0660283. [DOI] [PubMed] [Google Scholar]
- 21.Farooqui M.Y.H., Ahmed A.E. Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sc. 1984;34:2413–18. doi: 10.1016/0024-3205(84)90430-2. [DOI] [PubMed] [Google Scholar]
- 22.Svadlenka I., Davidkova E., Rosmus J. Interction of MDA with collagen. Z. Lebensm Unters Forsch. 1975;157:263–263. doi: 10.1007/BF01139539. [DOI] [PubMed] [Google Scholar]
- 23.Pfafferoot C., Meiselman H.J., Hochstein P. The effect of MDA on erythrocyte deformability. Blood. 1982;59:12–12. [PubMed] [Google Scholar]
- 24.Zima T., Fialova L., Mestek O., Janebova M., Crkovska J., Malbohan I., Stipek S., Mikulikova L., Popov P. Oxidative Stress, Metabolism of Ethanol and Alcohol-Related Diseases. J. Biomed. Sci. 2001;8(1):59–70. doi: 10.1007/BF02255972. [DOI] [PubMed] [Google Scholar]
- 25.Gabbita S.P., Robinson K.A., Stewart C.A., Floyd R.A., Hensley K. Redox regulatory mechanisms of a cellular signal transduction. Arch. Biochem. Biophys. 2000;376:1–13. doi: 10.1006/abbi.1999.1685. [DOI] [PubMed] [Google Scholar]
- 26.Kono Y., Fridovich I. Superoxide radical inhibits catalase. J. Biol. Chem. 1982;257:5751–5754. [PubMed] [Google Scholar]
- 27.Thome J., Foley P., Gsell W., Davids E., Wodarz N., Wiesbeck G.A., Boning J., Riederer P. Increased concentrations of manganese superoxide dismutase in serum of alcohol-dependent patients. Alcohol Alcohol. 1997;32(1):65–69. doi: 10.1093/oxfordjournals.alcalc.a008235. [DOI] [PubMed] [Google Scholar]
- 28.Kubota S., Sato N., Matsumura T., Kamada T. Chemiluminescence and superoxide dismutase in the plasma in patients with alcoholic and non-alcoholic liver injuries. Alcohol. 1985;2(3):469–72. doi: 10.1016/0741-8329(85)90117-X. [DOI] [PubMed] [Google Scholar]
- 29.Kiklugawa K., Kosugi H., Asakura T. Effects of MDA, a product of lipid peroxidation on the function and stability of haemoglobin. Arch. Biochem. Biophys. 1984;229:7–7. doi: 10.1016/0003-9861(84)90124-3. [DOI] [PubMed] [Google Scholar]