Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2003 Jul;18(2):169–180. doi: 10.1007/BF02867384

Characterization of lectins and their specificity in carcinomas—An appraisal

Asma Farhat Sherwani 1, Sameena Mohmood 1, Fauzia Khan 1, Rizwan Hasan Khan 2, Md Asim Azfer 1,
PMCID: PMC3453863  PMID: 23105409

Abstract

Lectins, a group of specific glycoproteins present in animal as well as plant cells, are used as differentiating markers to study cancers and metastatic cell lines. This property of lectins depends on the process of cellular glycosylation. Glycosylation of some of the extracellular membrane proteins and lipids maintains the cell/cell and cell/matrix interactions. Chemical alterations in glycosylation play an important role in the metastatic behavior of tumor cells. Carbohydrate residues of the membrane glycoproteins can be detected using lectins due to their binding specificity to carbohydrates. Lectins, therefore have gained an importance in the field of cancer research. Galectins, a specialized group of lectin like proteins that are Ca+ independent and galactoside binding, are also considered as differentiation markers in some specific cancers like the carcinomas of thyroid.

Thus the use of lectins and galectins to identify specific carbohydrates present on cell surface help in invasion and metastasis processes.

Key words: lectins, metastasis, cellular glycosylation, prognostic markers, galectins

Full Text

The Full Text of this article is available as a PDF (941.1 KB).

References

  • 1.Greenlee R. T., Murray T., Bolden S., Wingo P. A. Cancer statistics. Cancer J. Clin. 2000;50(1):7–33. doi: 10.3322/canjclin.50.1.7. [DOI] [PubMed] [Google Scholar]
  • 2.Du W. B., Chia K. S., Sankaranarayanan R., Sankila R., Seow A., Lee H. P. Population-based survival analysis of colorectal cancer patients in Singapore, 1968–1992. Int. J. Cancer. 2002;99:460–5. doi: 10.1002/ijc.10333. [DOI] [PubMed] [Google Scholar]
  • 3.Sen U., Sankaranarayanan R., Mandal S., Ramanakumar A. V., Parkin D. M., Siddiqi M. Cancer patterns in eastern India: the first report of the Kolkata cancer registry. Int. J. Cancer. 2002;100:86–91. doi: 10.1002/ijc.10446. [DOI] [PubMed] [Google Scholar]
  • 4.Thongsuksai P., Sriplung H., Phungrassami T., Prechavittayakul P. Cancer incidence in Songkhla, southern Thailand, 1990–1994. Southeast Asian J. Trop. Med. Public Health. 1997;28(Suppl 3):1–10. [PubMed] [Google Scholar]
  • 5.Hart I. R., Goode N. R., Wilson R. E. Molecular aspects of the metastatic cascade. Biochim. Biophys. Acta. 1989;989:65–84. doi: 10.1016/0304-419x(89)90035-8. [DOI] [PubMed] [Google Scholar]
  • 6.Hart I. R., Saini A. Biology of tumour metastasis. Biol. Tum. Metab. 1992;339:1453–61. doi: 10.1016/0140-6736(92)92039-i. [DOI] [PubMed] [Google Scholar]
  • 7.Sasaki T., Yamazaki K., Yamori T., Endo T. Inhibition of proliferation and induction of differentiation of glioma cells withDatura stramonium agglutinin. Br. J. Cancer. 2002;87:918–23. doi: 10.1038/sj.bjc.6600550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Goldstein I. J., Hayes C. E. The lectins: Carbohydrate—binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 1978;35:127–340. doi: 10.1016/S0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  • 9.Fernandes B., Sagman U., Auger M., Demetrio M., Dennis J. W. Beta 1–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 1991;51:718–23. [PubMed] [Google Scholar]
  • 10.Teshima S., Hirohashi S., Shimosato Y., Kishi K., Ino Y., Matsumoto K., Yamada T. Histochemically demonstrable changes in cell surface carbohydrates of human germ cell tumors. Lab. Invest. 1984;50:271–7. [PubMed] [Google Scholar]
  • 11.Vijayan K. K., Remani P., Beevi H., Ankathil R., Vijaykumar T., Radendran R., Augustine J., Vasudevan D. M. Tissue binding pattems of lectins in premalignant and malignant lesions of the oral cavity. J. Exp. Pathol. 1987;3:295–304. [PubMed] [Google Scholar]
  • 12.Bironaite D., Nesland J. M., Dalen H., Risberg B., Bryne M. N-Glycans influence the in vitro adhesive and invasive behaviour of three metastatic cell lines. Tumour Biol. 2000;21:165–75. doi: 10.1159/000030123. [DOI] [PubMed] [Google Scholar]
  • 13.Litynska A., Przybylo M., Ksiazek D., Laidler P. Differences of alpha3 beta1 integrin glycans from different human bladder cell lines. Acta Biochim. Pol. 2000;47:427–34. [PubMed] [Google Scholar]
  • 14.Hull H., Sugarman E., Spielman J., Carraway K. Biosynthetic maturation of an ascites tumor cell surface sialomucin. Evidence for O-glycosylation of cell surface glycoprotein by the addition of new oligosaccharides during recycling. J. Biol. Chem. 1991;266(21):13580–13586. [PubMed] [Google Scholar]
  • 15.Klein P. J., Vierbuchen M., Wurz H., Schulz K. D., Newman R. A. Secretion associated lectin—binding sites as a parameter of hormone dependence in mammary carcinoma. Brit. Jr. Can. 1981;44:476–78. doi: 10.1038/bjc.1981.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Klein P. J., Vierbuchen M., Fischer J., Schulz K. D., Farrar G., Uhlenbruck G. The significance of lectin receptors for the evaluation of hormone dependence in breast cancer. Jr. Str. Biochem. 1983;19:839–44. doi: 10.1016/0022-4731(83)90021-3. [DOI] [PubMed] [Google Scholar]
  • 17.Luis C. L., Sztynda T., Cheng Z. H., Wyllie R. G. Lectin—binding affinities of human breast tumors. Cancer. 1983;52:1244–50. doi: 10.1002/1097-0142(19831001)52:7<1244::AID-CNCR2820520719>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 18.Leathem A., Dokal I., Atkins N. Carbohydrate expression in breast cancer as an early indicator of metastatic potential. Jr. Path. 1984;142:A32–A32. [Google Scholar]
  • 19.Leathem A. J., Atkins N., Eisen T. Breast cancer metastsis, survival and carbohydrate expression associated with lectin binding. J. Path. 1985;145:73A–73A. [Google Scholar]
  • 20.Brooks S., Leathem A. J. C. Prediction of lymph node invovement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet. 1991;338:71–74. doi: 10.1016/0140-6736(91)90071-V. [DOI] [PubMed] [Google Scholar]
  • 21.Leathem, A. J. and Brooks, S. A. (1987) Predictive value of lectin binding on breast cancer recurrence and survival. Lancet. 1054–1056. [DOI] [PubMed]
  • 22.Schumacher U., Adam E., Brooks S. A., Leathem A. J. Lectin binding properties of human breast cancer cell lines and human milk with particular reference toHelix pomatia agglutinin. J. Histochem. Cytochem. 1995;43:275–281. doi: 10.1177/43.3.7868857. [DOI] [PubMed] [Google Scholar]
  • 23.Schumacher U., Kretzschmar H., Brooks S., Leathem A. Helix pomatia lectin binding pattern of brain metastasis originating from breast cancers. Path. Res. Prac. 1992;188:284–86. doi: 10.1016/s0344-0338(11)81205-7. [DOI] [PubMed] [Google Scholar]
  • 24.Krogerus L., Andersson L. C. Different lectin—binding patterns in primary breast cancers and their metastasis. Cancer. 1990;66:1802–9. doi: 10.1002/1097-0142(19901015)66:8<1802::AID-CNCR2820660827>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 25.Schumacher U., Higgs D., Loizidou M., Pickering R., Leathem A., Taylor I. The lectin Helix pomatia agglutinin is a good prognostic marker in colon cancer. Cancer. 1994;74:3104–3107. doi: 10.1002/1097-0142(19941215)74:12<3104::AID-CNCR2820741207>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 26.Alam S. M., Whitford P., Cushley W., George W. D., Campbell A. M. Flow cytometric analysis of cell surface carbohydrates in metasattic human breast cancer. Brit. Jr. Can. 1990;62:238–42. doi: 10.1038/bjc.1990.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Fenlon S., Ellis I. O., Bell J., Todd J. H., Elston C. W., Blamey R. W. Helix pomatia and Ulex europeus lectin binding in humanbreast cancer. Jr. Path. 1987;152:169–76. doi: 10.1002/path.1711520305. [DOI] [PubMed] [Google Scholar]
  • 28.Fukutomi T., Itabashi M., Tsugane S., Yamamoto H., Nanasawa T., Hirota T. Prognostic contributions of Helix pomatia and carcinoembryonic antigen staining using histochemical techniques in breast carcinomas. Jpn. Jr. Clin. Onco. 1989;19:127–134. [PubMed] [Google Scholar]
  • 29.Noguchi M., Thomas M., Kitagawa H., Kinoshita K., Ohta N., Nagamori M., Miyazaki I. Further analysis of predictive value of Helix pomatia lectin binding to primary breast cancer of axillary and internal mammary lymph node metastasis. Br. Jr. Can. 1993;67:1368–71. doi: 10.1038/bjc.1993.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Thomas M., Noguchi M., Fonseca L., Kitagawa H., Kinoshita K., Miyazaki I. Prognostic significance of Helix pomatia lectin and c—erbB—2 oncoprotein in human breast cancer. Br. Jr Can. 1993;68:621–26. doi: 10.1038/bjc.1993.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Galea M. H., Ellis I. O., Bell J., Elston C. W., Blamey R. W. prediction of lymph node involvement in breast cancer. Lancet. 1991;338:392–93. doi: 10.1016/0140-6736(91)90535-W. [DOI] [PubMed] [Google Scholar]
  • 32.Taylor C. W., Anbazhagan R., Jayatilake H., Adams A., Gusterson B. A., Price K., Gelber R. D., Goldhirsch A. Helix pomatia in breast cancer. Lancet. 1991;338:580–580. doi: 10.1016/0140-6736(91)91154-M. [DOI] [PubMed] [Google Scholar]
  • 33.Gusterson B. A., International (Ludwig) Breast Cancer Study Group Prognostic value of Helix pomatia in breast cancer. Br. Jr. Can. 1993;68:146–50. doi: 10.1038/bjc.1993.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Leathern, A. J. and Brooks, S. A. (1987) Predictive value of lectin binding on breast cancer recurrence and survival. Lancet. 1054–1056. [DOI] [PubMed]
  • 35.Brooks S. A., Leathem A. J. C. Prediction of lymph node invovement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet. 1991;338:71–74. doi: 10.1016/0140-6736(91)90071-V. [DOI] [PubMed] [Google Scholar]
  • 36.Alam S. M., Whitford P., Cushley W., George W. D., Campbell A. M. Flow cytometric analysis of cell surface carbohydrates in metasattic human breast cancer. Brit. Jr. Can. 1990;62:238–42. doi: 10.1038/bjc.1990.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ikeda Y., Mori M., Adachi Y., Matsushima T., Sugimachi K. Prognostic value of the histochemical expression of helix pomatia agglutinin in advanced colorectal cancer. A univariate and multivariate analysis. Dis. Colon Rectum. 1994;37:181–184. doi: 10.1007/BF02047545. [DOI] [PubMed] [Google Scholar]
  • 38.Kakeji Y., Tsujitami S., Mori M., Maehara Y., Sugimachi K. Helix pomatia agglutinin binding activity is a predictorof survival time for patients with gastric carcinoma. Cancer. 1991;68:2438–2442. doi: 10.1002/1097-0142(19911201)68:11<2438::AID-CNCR2820681119>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • 39.Yoshida Y., Okamura T., Shirakusa T. An immunohistochemical study ofHelix pomatia agglutinin binding on carcinomas of the esophagus. Surg. Gynecol. Obstet. 1993;177:632–632. [PubMed] [Google Scholar]
  • 40.Schumacher, U. (1990) Vergleichende histologische, histochemische und ultrastrukturelle untersuchungen zum Nachweis und zur Bedeutung von kohlenhydrathaltigen Verbindungen in der Mamma: Drusenepithel, Milchfettkugelmembran, Bindegewebe. Habilitapionschrift. Thesis, University of Munchen.
  • 41.Walker R. A. Helix pomatia and prognosis of breast cancer. Br. J. Can. 1993;68:453–54. doi: 10.1038/bjc.1993.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Walker R. A. Assessment of milk fat gobule membrane antibodies and lectins as markers of short-term prognosis in breast cancer. Br. J. Can. 1990;62:462–66. doi: 10.1038/bjc.1990.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Beltrao E. I., Correia M. T., Figueredo-Silva J., Coelho L. C. Binding evaluation of isoform 1 from Cratylia mollis lectin to human mammary tissues. Appl. Biochem. Biotechnol. 1998;74(3):125–34. doi: 10.1007/BF02825961. [DOI] [PubMed] [Google Scholar]
  • 44.Boland C. R., Roberts J. A. Quantitation of lectins. Jr. Histochem. Cytochem. 1998;36:1305–07. doi: 10.1177/36.10.3138307. [DOI] [PubMed] [Google Scholar]
  • 45.Jordinson M., El-Hariry I., Calnan D., Calam J., Pignatelli M. Vicia faba agglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut. 1999;44(5):709–14. doi: 10.1136/gut.44.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Muto S., Sakuma K., Taniguchi A., Matsumoto K. Human mannose—binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biol. Pharm. Bull. 1999;22(4):347–52. doi: 10.1248/bpb.22.347. [DOI] [PubMed] [Google Scholar]
  • 47.Femandez-Rodriguez J., Feijoo-Camero C., Merino-Trigo A., Paez de la Cadena M., Rodriguez-Berrocal F. J., Carlos A., Butron M., Martinez-Zorzano V. S. Immunohistochemical analysis of sialic acid and fucose composition in human colorectal adenocarcinoma. Tumor Biol. 2000;21(3):153–64. doi: 10.1159/000030122. [DOI] [PubMed] [Google Scholar]
  • 48.Ching C. K., Rhodes J. M. Purification and characterization of a peanut agglutinin binding pancreatic—cancer—related serum mucous glycoprotein. Intr. Jr. Can. 1990;45:1022–27. doi: 10.1002/ijc.2910450607. [DOI] [PubMed] [Google Scholar]
  • 49.Nishimura K., Watnabe A., Sasaki H. Newly established human pancreatic carcinoma cell lines and their lectin binding properties. Intr. Jr. Panreat. 1993;13:31–41. doi: 10.1007/BF02795197. [DOI] [PubMed] [Google Scholar]
  • 50.Kawa S., Kato M., Oguchi H., Kobayashi T., Furuta S., Kanai M. Preparation of pancreatic cancer—associated mucin expressing CA19-9, CA50, Span-1, sialyl SSEA- 1, and Dupan- 2. Scand. Jr. Gastroentero. 1991;26:981–92. doi: 10.3109/00365529108996252. [DOI] [PubMed] [Google Scholar]
  • 51.Kawa S., Kato M., Oguchi H., Hsue G. L., Kobayashi T., Koiwai T., Tokoo M., Furuta S., Ichikawa T., Kanai M. Clinical evaluation of pancreatic cancer—associated mucin expressing CA19-9, CA50, Span-1, sialyl SSEA-1, and Dupan-2. Scand. Jr. Gastroentero. 1992;27:635–43. doi: 10.3109/00365529209000132. [DOI] [PubMed] [Google Scholar]
  • 52.Ohta H., Sawabu N., Odani H., Kawakami H., Watanabe H., Toya D., Ozaki K., Hattori N. Characterization of gamma—glutamyltranspeptidase from human pancreatic cancer. Pancreas. 1990;5:82–90. doi: 10.1097/00006676-199001000-00012. [DOI] [PubMed] [Google Scholar]
  • 53.Hada T., Kondo M., Yasukawa K., Amuro Y., Higashino K. Discrimination of liver cirrohosis from chronic hepatitis by measuring the ratio ofAleuria aurantia lectin—reactive serum cholinesterase to immunoreactive protein. Clin. Chim. Acted. 1999;281(1–2):37–46. doi: 10.1016/S0009-8981(98)00202-2. [DOI] [PubMed] [Google Scholar]
  • 54.Kumada T., Nakano S., Takeda I., Kiriyama S., Sone Y., Hayashi K., Katoh H., Endoh T., Sassa T., Satomura S. Clinical utility ofLens culinaris agglutinin—reactive alpha—fetoprotein in small hepatocellular carcinoma: special refrence to imaging diagnosis. J Hepatol. 1999;30(1):125–30. doi: 10.1016/S0168-8278(99)80016-6. [DOI] [PubMed] [Google Scholar]
  • 55.Fukushima K., Hada T., Higashino K., Yamashita K. Elevated serum levels ofTricosanthus japonica agglutinin-l binding alkaline phosphatase in relation to high—risk groups for hepatocellular carcinomas. Clin. Cancer Res. 1998;4(11):2771–7. [PubMed] [Google Scholar]
  • 56.Ward G. K., Steward S. S., Price G. B., Mackillop J. W. Cellular heterogeneity in normal human urothelium: quatitative studies of lectin binding. Histochem. Jr. 1987;19:337–44. doi: 10.1007/BF01680450. [DOI] [PubMed] [Google Scholar]
  • 57.Orntift T. F., Petersen S. E., Wolf H. Dual—parameter flow cytometry of transitional cell carcinomas. Quantitation of DNA content and binding of carbohydrate ligands in cellular subpopulations. Cancer. 1988;61:963–70. doi: 10.1002/1097-0142(19880301)61:5<963::AID-CNCR2820610518>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 58.Langkilde N. C., Wolf H., Orntoft T. F. Binding of wheat and peanut lectins to human transitional cell carcinomas. Cancer. 1989;64:849–53. doi: 10.1002/1097-0142(19890815)64:4<849::AID-CNCR2820640415>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 59.Langkilde N. C., Wolf H., Clausen H., Orntoft T. F. Human urinary bladder carcinoma glycoconjugates expressing T—( Gal beta (1–3) GalNac alpha 1—O—R) and T—like antigens: a comparitive study using peanut agglutinin and poly—and monoclonal antibodies. Cancer Research. 1992;52:5030–36. [PubMed] [Google Scholar]
  • 60.Langkilde N. C., Wolf H., Orntoft T. F. Lectinohistochemistry of human bladder cancer: loss of lectin binding structures in invasive carcinomas. APIMS. 1989;97:367–73. doi: 10.1111/j.1699-0463.1989.tb00802.x. [DOI] [PubMed] [Google Scholar]
  • 61.Ward G. K., Steward S. S., Dotsikas G., Price G. B., Mackillop W. J. Cellular heterogeneity in human transitional cell carcinoma: an analysis of optical properties and lectin binding. Histochem. J. 1992;24:685–94. doi: 10.1007/BF01047590. [DOI] [PubMed] [Google Scholar]
  • 62.Kunze E., Schulz H., Adamek M., Gabius H. J. Long term administration of galactoside—specific mistletoe lectin in an animal model: no protection against N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder carcinogenesis in rats and n induction of a relevant local cellular immune response. J Cancer Res. Clin. Oncol. 2000;126:125–38. doi: 10.1007/s004320050022. [DOI] [PubMed] [Google Scholar]
  • 63.Soderstrom K. O. Lectin binding to prostatic adenocarcinoma. Cancer. 1987;60:1823–31. doi: 10.1002/1097-0142(19871015)60:8<1823::AID-CNCR2820600825>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • 64.Loy T. S., Kyle J., Bickel J. T. Binding of soyabean agglutinin lectin to prostatic hyperplasia and adenocarcinoma. Cancer. 1989;63:1583–86. doi: 10.1002/1097-0142(19890415)63:8<1583::AID-CNCR2820630823>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • 65.McNeal J. E., Alroy J., Villers A., Rewine E. A., Friha F. S., Stamey T. A. Mucinous differentiation in prostatic adenocarcinoma. Human Pathology. 1991;22:979–88. doi: 10.1016/0046-8177(91)90006-B. [DOI] [PubMed] [Google Scholar]
  • 66.Shiraishi T., Atsumi S., Yatani R. Comparitive study of prostatic carcinoma bone metastasis among Japanese in Japan and Japanese Americans and whites in Hawaii. Advan. Exp. Medi. Bio. 1992;324:7–16. doi: 10.1007/978-1-4615-3398-6_2. [DOI] [PubMed] [Google Scholar]
  • 67.Aoki D., Nozawa S., lizuka R., Kawakami H., Hirano H. Differences in lectin binding patterns of normal endometrium and endometrial adenocarcinoma with special reference to staining with Ulex europeus agglutinin—1 and peanut agglutinin. Gynae. Onco. 1990;37:338–45. doi: 10.1016/0090-8258(90)90364-Q. [DOI] [PubMed] [Google Scholar]
  • 68.Sumi S., Arai K., Kitahara S., Yoshida K. Serial lectin affinity chromatography demonstrates altered asparagines—linked sugar—chain structures of prostate specific antigen in human prostate carcinomas. J. Chromtogr. B. Biomed. Sci. Appl. 1999;727(1–2):9–14. doi: 10.1016/S0378-4347(99)00069-9. [DOI] [PubMed] [Google Scholar]
  • 69.Fritz P., Seizer-Schmidt R., Murdter T. E., Kroemer H. K., Aulitzky W., Andre S., Gabius H. J., Friedel G., Toomes H., Siegle I. Ligands for Viscum album agglutinin and Galectin—I in human lung cancer. Is there any prognostic relevance? Acta Histochem. 1999;101:239–53. doi: 10.1016/s0065-1281(99)80025-7. [DOI] [PubMed] [Google Scholar]
  • 70.Fischer E., Wagner M., Bertsch T. Cepaea hortensis agglutinin-I, specific for O-glycosidically linked sialic acids, selectively labels endothelial cells of distinct vascular beds. Histochem J. 2000;32:105–9. doi: 10.1023/A:1004066212317. [DOI] [PubMed] [Google Scholar]
  • 71.Lahm H., Hoeflich A., Andre S., Sordat B., Kaltner H., Wolf E., Gabius H. Gene expression of galectin—9/ecalectin, a potent eosinophil chemoattractant, and/or the insertional isoform in human colorectal carcinoma cell lines and detection of frameshift mutations for protein sequence truncations in the second functional lectin domain. Int. J. Oncol. 2000;17:519–24. doi: 10.3892/ijo.17.3.519. [DOI] [PubMed] [Google Scholar]
  • 72.Danguy A., Camby I., Kiss R. Galectins and cancer. Biochim Biophys Acted. 2002;1572(2–3):285–93. doi: 10.1016/s0304-4165(02)00315-x. [DOI] [PubMed] [Google Scholar]
  • 73.Bassen R., Brichory F., Caulet-Maugendre S., Delaval P., Dazord L. Vertebrate galectins: structure and function, role in tumoral process. Bull. Cancer. 2000;87:703–7. [PubMed] [Google Scholar]
  • 74.Bernerd F., Sarasin A., Magnaldo T. Galectin—7, overexpression is associated with the apoptotic process in UVB—induced sunbum keratinocytes. Proc. Natl. Acad. Sci. USA. 1999;96:11329–34. doi: 10.1073/pnas.96.20.11329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Magnaldo T., Fowlis D., Darmon M. Galectin-7, a marker of all types of stratified epithelia. Differentiation. 1998;63:159–68. doi: 10.1046/j.1432-0436.1998.6330159.x. [DOI] [PubMed] [Google Scholar]
  • 76.Gopalkrishnan R. V., Roberts T., Tuli S., Kang D., Christiansen K. A., Fisher P. B. Molecular characterization of prostate carcinoma tumor antigen—I, a human galectin—8 related gene. Oncogene. 2000;19:4405–16. doi: 10.1038/sj.onc.1203767. [DOI] [PubMed] [Google Scholar]
  • 77.Levy Y., Arbel-Goren R., Hadari Y. R., Eshhar S., Ronen D., Elhanany E., Geiger B., Zick Y. Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem. 2001;276:31285–95. doi: 10.1074/jbc.M100340200. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES