Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2000 Jul;15(2):155–160. doi: 10.1007/BF02883745

An opium alkaloid-papaverine ameliorates ethanol-induced hepatotoxicity: Diminution of oxidative stress

Ramesh Chandra 1,, Ritu Aneja 2, Charu Rewal, Rama Konduri, Sujaka K Dass, Shefali Agarwal
PMCID: PMC3453955  PMID: 23105258

Abstract

In this communication, we show the modulatory potential of papaverine, an opium alkaloid and a well known vasodilator agent on the ethanol-induced hepatic oxidative stress in male Wistar rats. Ethanol treatment (50% v/v) enhanced lipid peroxidation significantly accompanied by a decline in the activities of glutathione peroxidase (G-Px), glutathione reductase (GR) and depletion in levels of hepatic glutathione (GSH). Ethanol administration increased hepatic glutathione-s-transferases (GST). Enhanced lipid peroxidation induced by ethanol was significantly reduced when papverine was coadministered (P<0.05). In addition, the depleted levels of glutathione and inhibited activities of G-Px and GR recovered significantly (P<0.05) levelling off to control values on co-exposure. Papaverine (200 mg/kg bw) effectively antagonised the ethanol-induced lipid peroxidation and impaired glutathione levels and glutathione dependent enzyme systems. Our results suggest that papaverine is an effective chemopreventive agent in the liver and may suppress the ethanol-induced hepatotoxicity.

Keywords: Papaverine, Lipid Peroxidation, Glutathione, Ethanol, Oxidative Stress

Full Text

The Full Text of this article is available as a PDF (389.6 KB).

References

  • 1.Plaa G.L., Witschi H. Chemicals drugs and lipid peroxidation. Annu. Rev. Pharmacol. Toxicol. 1971;16:125–141. doi: 10.1146/annurev.pa.16.040176.001013. [DOI] [PubMed] [Google Scholar]
  • 2.Irving M.G., Halliday J.W., Dowell L.W. Association between alcoholism and increased hepatic iron stores. Alcoholism Clin. Exp. 1988;12:7–13. doi: 10.1111/j.1530-0277.1988.tb00124.x. [DOI] [PubMed] [Google Scholar]
  • 3.Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979;59:527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  • 4.Sies A., Wendel A., Bors W. In: Metabolic Basis of Detoxification. Jakoby W.B., Bend J.R., Caldwell J., editors. New Delhi: Academic Press; 1984. pp. 307–307. [Google Scholar]
  • 5.Flohe L. In: Free Radicals in Biology. Pryor W.A., editor. New Delhi: Academic Press; 1982. pp. 223–223. [Google Scholar]
  • 6.Jakoby W.B., Habig W.H. In: Enzymatic Basis of Detoxification. Jakoby W.B., editor. New Delhi: Academic Press; 1980. pp. 63–63. [Google Scholar]
  • 7.Farooqui M.Y.H., Ahmed A.E. Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci. 1984;34:2413–2418. doi: 10.1016/0024-3205(84)90430-2. [DOI] [PubMed] [Google Scholar]
  • 8.Minor T., Isselhard W. Role of the hepato vasculature in free radical mediated reperfusion damage of the liver. Eur Surg. Res. 1993;25(5):287–293. doi: 10.1159/000129291. [DOI] [PubMed] [Google Scholar]
  • 9.Shiraishi N., Arima T., Aono K., Inouye B., Morimoto Y., Utsumi K. Inhibition by biscoclaurine alkaloid of lipid peroxidation in biological membranes. Physiol. Chem. Phys. 1980;12(4):299–305. [PubMed] [Google Scholar]
  • 10.Wright J.R., Colby H.D., Miles P.R. Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch. Biochem. and Biophys. 1981;206:296–304. doi: 10.1016/0003-9861(81)90095-3. [DOI] [PubMed] [Google Scholar]
  • 11.Jollow D.J., Mitchell J.R., Zampaglione N., Gilete J.R. Bromobenzene-induced necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 1974;11:151–169. doi: 10.1159/000136485. [DOI] [PubMed] [Google Scholar]
  • 12.Habig W.H., Pabst M.J., Jakob W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
  • 13.Athar M., Khan W.A., Mukhtar H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 1989;49:5784–5788. [PubMed] [Google Scholar]
  • 14.Brady J.F., Li D.C., Ishizaki H., Yang C.S. Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities. Cancer Res. 1988;48:5937–5940. [PubMed] [Google Scholar]
  • 15.Mohandas J., Marshall J.J., Duggin G.G., Hovarth J.S., Tiller D. Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res. 1984;44:5086–5091. [PubMed] [Google Scholar]
  • 16.Finney D.J. Statistical Methods in Biological Assay. 2nd edn. New Delhi: London: Hafner Publishing Co.; Charles Griffin & Co. Ltd.; 1964. [Google Scholar]
  • 17.Videla L.A., Fernandez V., Ugarte G., Valenzuela A. Effect of acute ethanol intoxication on the content of reduced glutathione of the liver in relation to its lipoperoxidative capacity in the rat. FEBS Lett. 1980;111:6–10. doi: 10.1016/0014-5793(80)80749-6. [DOI] [PubMed] [Google Scholar]
  • 18.Mac Donald C.M., Dow J., Moore M.R. A possible protective role for sulphydryl compounds in acute alcoholic liver injury. Biochem. Pharmacol. 1977;26:1529–1531. doi: 10.1016/0006-2952(77)90428-2. [DOI] [PubMed] [Google Scholar]
  • 19.Sies H., Graf P. Hepatic thiol and glutathione efflux under theinfluence of vasopressin, phenylephrine and adrenaline. Biochem. J. 1985;226:545–549. doi: 10.1042/bj2260545. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES