Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(13):4208–4212. doi: 10.1073/pnas.81.13.4208

Potentiation of alpha 1-adrenergic responses in rat liver by a cAMP-dependent mechanism.

N G Morgan, R Charest, P F Blackmore, J H Exton
PMCID: PMC345398  PMID: 6330749

Abstract

Treatment of isolated hepatocytes with the alpha 1-adrenergic agonist norepinephrine induced a dose-dependent increase in free cytosolic Ca2+, as judged by fluorescence increases, in cells loaded with the Ca2+ indicator (2-[(2-bis[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8 -bis [carboxymethyl]aminoquinoline (quin-2). Pretreatment with either glucagon or dibutyryl cAMP increased the rate and magnitude of the quin-2 fluorescence response in hepatocytes treated with submaximal doses of norepinephrine and increased the cell sensitivity such that a physiological concentration of norepinephrine (7.5 nM) was able to provoke a quin-2 fluorescence response. Similar enhancement of norepinephrine-induced phosphorylase activation and pyridine nucleotide reduction in isolated hepatocytes and Ca2+ efflux from the perfused liver was also observed in the presence of glucagon. These potentiated responses correlated with a cAMP-dependent increase (mediated by glucagon, dibutyryl cAMP, or forskolin) in the binding of [3H]norepinephrine or [3H]epinephrine to sites present on isolated hepatocytes bearing the characteristics of alpha 1-adrenergic receptors. The data suggest that a cAMP-dependent mechanism is involved in the regulation of alpha 1-agonist binding to liver cells and, thereby, in the control of hepatic carbohydrate metabolism in response to catecholamines.

Full text

PDF
4208

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggerbeck M., Guellaen G., Hanoune J. Adrenergic receptor of the alpha 1-subtype mediates the activation of the glycogen phosphorylase in normal rat liver. Biochem Pharmacol. 1980 Feb 15;29(4):643–645. doi: 10.1016/0006-2952(80)90389-5. [DOI] [PubMed] [Google Scholar]
  2. Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies of the interaction between glucagon and alpha-adrenergic agonists in the control of hepatic glucose output. J Biol Chem. 1982 Apr 10;257(7):3759–3765. [PubMed] [Google Scholar]
  3. Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. J Biol Chem. 1977 Apr 25;252(8):2662–2669. [PubMed] [Google Scholar]
  4. Beckh K., Hartmann H., Jungermann K. Modulation by insulin and glucagon of the activation of glycogenolysis by perivascular nerve stimulation in the perfused rat liver. FEBS Lett. 1982 Sep 6;146(1):69–72. doi: 10.1016/0014-5793(82)80707-2. [DOI] [PubMed] [Google Scholar]
  5. Blackmore P. F., Brumley F. T., Marks J. L., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem. 1978 Jul 25;253(14):4851–4858. [PubMed] [Google Scholar]
  6. Blackmore P. F., Dehaye J. P., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem. 1979 Aug 10;254(15):6945–6950. [PubMed] [Google Scholar]
  7. Blackmore P. F., Hughes B. P., Charest R., Shuman E. A., 4th, Exton J. H. Time course of alpha1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes. J Biol Chem. 1983 Sep 10;258(17):10488–10494. [PubMed] [Google Scholar]
  8. Blair J. B., James M. E., Foster J. L. Adrenergic control of glucose output and adenosine 3':5'-monophosphate levels in hepatocytes from juvenile and adult rats. J Biol Chem. 1979 Aug 25;254(16):7579–7584. [PubMed] [Google Scholar]
  9. Bühler H. U., da Prada M., Haefely W., Picotti G. B. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J Physiol. 1978 Mar;276:311–320. doi: 10.1113/jphysiol.1978.sp012235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chan T. M., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. J Biol Chem. 1978 Sep 25;253(18):6393–6400. [PubMed] [Google Scholar]
  11. Charest R., Blackmore P. F., Berthon B., Exton J. H. Changes in free cytosolic Ca2+ in hepatocytes following alpha 1-adrenergic stimulation. Studies on Quin-2-loaded hepatocytes. J Biol Chem. 1983 Jul 25;258(14):8769–8773. [PubMed] [Google Scholar]
  12. Crane J. K., Campanile C. P., Garrison J. C. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. J Biol Chem. 1982 May 10;257(9):4959–4965. [PubMed] [Google Scholar]
  13. El-Refai M. F., Blackmore P. F., Exton J. H. Evidence for two alpha-adrenergic binding sites in liver plasma membranes. Studies with [3H]epinephrine and [3H]dihydroergocryptine. J Biol Chem. 1979 Jun 10;254(11):4375–4386. [PubMed] [Google Scholar]
  14. El-Refai M. F., Exton J. H. Effects of trypsin on binding of [3H]epinephrine and [3H]-dihydroergocryptine to rat liver plasma membranes. Evidence for interconversion of binding sites. J Biol Chem. 1980 Jun 25;255(12):5853–5858. [PubMed] [Google Scholar]
  15. Felig P., Gusberg R., Hendler R., Gump F. E., Kinney J. M., Mulrow P. J. Concentrations of glucagon and the insulin:glucagon ratio in the portal and peripheral circulation. Proc Soc Exp Biol Med. 1974 Oct;147(1):88–90. doi: 10.3181/00379727-147-38286. [DOI] [PubMed] [Google Scholar]
  16. Fujimoto T., Ohara S., Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest. 1982 Jun;69(6):1212–1222. doi: 10.1172/JCI110560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graber S. E., Hawiger J. Evidence that changes in platelet cyclic AMP levels regulate the fibrinogen receptor on human platelets. J Biol Chem. 1982 Dec 25;257(24):14606–14609. [PubMed] [Google Scholar]
  18. Hartmann H., Beckh K., Jungermann K. Direct control of glycogen metabolism in the perfused rat liver by the sympathetic innervation. Eur J Biochem. 1982 Apr;123(3):521–526. doi: 10.1111/j.1432-1033.1982.tb06562.x. [DOI] [PubMed] [Google Scholar]
  19. Hoffman B. B., Michel T., Kilpatrick D. M., Lefkowitz R. J., Tolbert M. E., Gilman H., Fain J. N. Agonist versus antagonist binding to alpha-adrenergic receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4569–4573. doi: 10.1073/pnas.77.8.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hutson N. J., Brumley F. T., Assimacopoulos F. D., Harper S. C., Exton J. H. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J Biol Chem. 1976 Sep 10;251(17):5200–5208. [PubMed] [Google Scholar]
  21. Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
  22. Kirsch D., Kemmler W., Häring H. U. Cyclic AMP modulates insulin binding and induces post-receptor insulin resistance of glucose transport in isolated rat adipocytes. Biochem Biophys Res Commun. 1983 Aug 30;115(1):398–405. doi: 10.1016/0006-291x(83)91017-3. [DOI] [PubMed] [Google Scholar]
  23. Ly S., Kim K. H. Inactivation of hepatic acetyl-CoA carboxylase by catecholamine and its agonists through the alpha-adrenergic receptors. J Biol Chem. 1981 Nov 25;256(22):11585–11590. [PubMed] [Google Scholar]
  24. Morgan N. G., Blackmore P. F., Exton J. H. Age-related changes in the control of hepatic cyclic AMP levels by alpha 1- and beta 2-adrenergic receptors in male rats. J Biol Chem. 1983 Apr 25;258(8):5103–5109. [PubMed] [Google Scholar]
  25. Morgan N. G., Blackmore P. F., Exton J. H. Modulation of the alpha 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP. J Biol Chem. 1983 Apr 25;258(8):5110–5116. [PubMed] [Google Scholar]
  26. Morgan N. G., Exton J. H., Blackmore P. F. Angiotensin II inhibits hepatic cAMP accumulation induced by glucagon and epinephrine and their metabolic effects. FEBS Lett. 1983 Mar 7;153(1):77–80. doi: 10.1016/0014-5793(83)80122-7. [DOI] [PubMed] [Google Scholar]
  27. Morgan N. G., Waynick L. E., Exton J. H. Characterisation of the alpha 1-adrenergic control of hepatic cAMP in male rats. Eur J Pharmacol. 1983 Dec 9;96(1-2):1–10. doi: 10.1016/0014-2999(83)90522-8. [DOI] [PubMed] [Google Scholar]
  28. Sonne O., Berg T., Christoffersen T. Binding of 125I-labeled glucagon and glucagon-stimulated accumulation of adenosine 3':5'-monophosphate in isolated intact rat hepatocytes. Evidence for receptor heterogeneity. J Biol Chem. 1978 May 10;253(9):3203–3210. [PubMed] [Google Scholar]
  29. Stadel J. M., Nambi P., Shorr R. G., Sawyer D. F., Caron M. G., Lefkowitz R. J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3173–3177. doi: 10.1073/pnas.80.11.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williamson J. R., Cooper R. H., Hoek J. B. Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta. 1981 Dec 30;639(3-4):243–295. doi: 10.1016/0304-4173(81)90012-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES