Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2006 Sep;21(2):118–122. doi: 10.1007/BF02912925

Proxidant and antioxidant status in patients of type II Diabetes Mellitus with IHD

Madhur Gupta 1, Suresh Chari 1,
PMCID: PMC3453985  PMID: 23105627

Abstract

Patients with type II Diabetes Mellitus (NIDDM) are more prone to Ischaemic Heart Disease (IHD). Although, oxygen free radicals are known to contribute to the development of IHD, conflicting reports are available regarding the antioxidant status in patients of NIDDM complicated with IHD. This study was undertaken to investigate the oxidative status in patients of NIDDM and to assess their correlation with plasma glucose, glycosylated haemoglobin and duration of diabetes. The levels of malondialdehyde were significantly increased where as levels of superoxide dismutase, Glutathione peroxidase and vitamin C were significantly decreased in diabetics without complications and non-diabetics with IHD when compared with the controls. The levels of malondialdehyde and Glutathione peroxidase were significantly increased where as levels of superoxide dismutase and vitamin C were significantly decreased in diabetics with IHD when compared with diabetics without complications and non-diabetics with IHD. The implications of the results are discussed.

Key Words: Non insulin Dependent Diabetes Mellitus, Ischaemic Heart Disease, oxidative status

Full Text

The Full Text of this article is available as a PDF (66.7 KB).

References

  • 1.Cardiovascular Health Research Initiative Global burden of cardiovascular disease. South Asian Journal of Preventive Cardiology. 2003;7(no 2):69–71. [Google Scholar]
  • 2.Kannel W.B., McGee D.L. Diabetes and cardiovascular disease: The Framingham study. JAMA. 1979;241:2035–38. doi: 10.1001/jama.241.19.2035. [DOI] [PubMed] [Google Scholar]
  • 3.Stamler J., Vaccaro O., Neaton J.D., Wentworth D. The multiple risk factor Intervention Trial Research Group: Diabetes other risk factors and 12 year cardiovascular mortality for men screened in the multiple risk factor Intervention Trial. Diabetes Care. 1993;16:434–44. doi: 10.2337/diacare.16.2.434. [DOI] [PubMed] [Google Scholar]
  • 4.Wagenknecht L.E., Bowden D.W., Carr J.J., Langefeld C.D., Freedman B.J., Rich S.S. Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes. 2001;50:861–66. doi: 10.2337/diabetes.50.4.861. [DOI] [PubMed] [Google Scholar]
  • 5.Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease Bratisl. Lek. Listy. 2000;101(10):541–51. [PubMed] [Google Scholar]
  • 6.Artemeva G.B., Rahita D.R., Uzbekova D.G. The effect of parmidine on the lipid peroxidation processes in coronary atherrosclerosis. Farmakol. Toksikol. 1990;53:56–8. [PubMed] [Google Scholar]
  • 7.Merzouk S., Hichami A., Madani S., Merzouk H. Antioxidant status and levels of different vitamins determined by HPLC in diabetic subjects with multiple complications. Gen. Physiol. Biophys. March. 2003;22(1):15–27. [PubMed] [Google Scholar]
  • 8.Kesavulu M.M., Rao B.K., Giri R. Lipid peroxidation and antioxidant enzyme status in type 2 diabetes with coronary artery disease. Diabetes Res. Clin. Pract. 2001;53(1):33–9. doi: 10.1016/S0168-8227(01)00238-8. [DOI] [PubMed] [Google Scholar]
  • 9.Jang Y., Leo J.H., Cho E.Y., Chung N.S. Differences in body fat distribution and antioxidant status in korean men with cardiovascular with and without diabetes. Am. J. Clin. Nutr. 2001;73(1):68–74. doi: 10.1093/ajcn/73.1.68. [DOI] [PubMed] [Google Scholar]
  • 10.Friedewalds W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of preparative ultracentrifuge. Clin. Chem. 1972;18:499–502. [PubMed] [Google Scholar]
  • 11.Arthur J.R., Boyne R. Superoxide dismutase and glutathione activities in neutrophils from selenium defecient and copper deficient cattle. Life Sciences. 1985;3:1569–1575. doi: 10.1016/0024-3205(85)90381-9. [DOI] [PubMed] [Google Scholar]
  • 12.Kyaw A. A simple colorimetric method for ascorbic acid determination in blood. Clinica. Chimica. Acta. 1978;86:153–157. doi: 10.1016/0009-8981(78)90128-6. [DOI] [PubMed] [Google Scholar]
  • 13.Paglia D.E., Valentine W.N. Studies in the qualitative and quantitative characterization of erythrocytic glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. [PubMed] [Google Scholar]
  • 14.Matkovics B., Kotorman M., Varga I.S. Pro, antioxidant studies in the blood of type 2 diabetic patients. Acta. Physiol. Hung. 1997;85(2):107–12. [PubMed] [Google Scholar]
  • 15.Sundaram R.K., Bhaskar A., Vijayalingam S. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin. Science. 1996;90:255–60. doi: 10.1042/cs0900255. [DOI] [PubMed] [Google Scholar]
  • 16.Esposito K., Giugliano D. Hyperglycemia and vascular damage: Role of oxidative stress. Recent Prog. Med. 2002;93(3):172–4. [PubMed] [Google Scholar]
  • 17.Giugliano D., Ceriello A., Paolisso G. Diabetes Mellitus, Hypertension, and Cardiovascular Disease: Which role for oxidative stress? Metabolism. 1995;44(3):363–368. doi: 10.1016/0026-0495(95)90167-1. [DOI] [PubMed] [Google Scholar]
  • 18.Pordrez E.A., Abu Soud H.M., Hazen S.L. Myeloperoxidase generated oxidants and atheosclerosis. Free Radic. Biol. Med. 2000;28:1717–1725. doi: 10.1016/S0891-5849(00)00229-X. [DOI] [PubMed] [Google Scholar]
  • 19.Uchida R. Role of reactive aldehyde in cardiovascular disease. Free Radic. Med. Biol. 2000;28:1685–1696. doi: 10.1016/S0891-5849(00)00226-4. [DOI] [PubMed] [Google Scholar]
  • 20.Ehara S., Ueda M., Naruko T. Pathophysiological role of oxidised LDL in plaque instability in coronary artery disease. J. Diabetes and its complications. 2002;16:60–64. doi: 10.1016/S1056-8727(01)00210-0. [DOI] [PubMed] [Google Scholar]
  • 21.Govindraju V., Neelam, Manjunath G.N. Hyperhomocysteinemia: an emerging risk factor for cardiovascular disease. Ind. J. Clin. Biochem. 2003;18(1):8–14. doi: 10.1007/BF02867659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Narsuzcwicz M., Mirkiewicz E., Olszewski A.J. Thiolation of IDL by homocyteine thiolactone causes increased aggregation and altered interaction with cultured macrophages. Nutr. Metab. Cardiovasc. Dis. 2003;4:70–77. [Google Scholar]
  • 23.Heinecka T.W. Superoxide mediated oxidation of IDL by thiols. In: Cerutti PA, Fridovich I, McCord TM, editors. Oxy radicals in molecular biology and pathology. New York: Alan R. Liss.; 1988. pp. 443–57. [Google Scholar]
  • 24.Uzel N., Sivas A., Uysal M. Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus. Horm. Metab. Res. 1987;19:89–90. doi: 10.1055/s-2007-1011748. [DOI] [PubMed] [Google Scholar]
  • 25.Sinclair A.J., Girling A.J., Gray L. Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia. 1991;34:171–175. doi: 10.1007/BF00418271. [DOI] [PubMed] [Google Scholar]
  • 26.Blaustein A., Deneke S.M., Stolz R.I. Myocardial glutathione depletion impairs recovery after short period of ischemia. Circulation. 1989;80:1449–57. doi: 10.1161/01.cir.80.5.1449. [DOI] [PubMed] [Google Scholar]
  • 27.Mezzetti A., Dillio C., Calafiore A.M. Glutathione peroxidase, glutathione reductase and glutathione transferase activities in human artery, vein and heart. J. Mol. Cell Cardiol. 1990;22:935–8. doi: 10.1016/0022-2828(90)91033-4. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES