Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2006 Sep;21(2):80–89. doi: 10.1007/BF02912918

Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction

M Maneesh 1,, H Jayalekshmi 2
PMCID: PMC3453990  PMID: 23105620

Abstract

The excessive generation of reactive oxygen species (ROS) by abnormal spermatozoa and contaminating leukocytes has been defined as one of the few etiologies for male infertility. Administration of antioxidants in patients with ‘male factor’ infertility has begun to attract considerable interest. The main difficulty of such an approach is our incomplete understanding of the role of free radicals in normal and abnormal sperm function leading to male infertility. Mammalian spermatozoa membranes are very sensitive to free radical induced damage mediated by lipid peroxidation, as they are rich in polyunsaturated fatty acids. Limited endogenous mechanisms exist to reverse these damages. ROS attacks the fluidity of the sperm plasma membrane and the integrity of DNA in the sperm nucleus. ROS induced DNA damage accelerate the germ cell apoptosis. Unfortunately spermatozoa are unable to repair the damage induced by excessive ROS as they lack the cytoplasmic enzymes required to accomplish the repair. Assessment of such oxidative stress status (OSS) may help in the medical treatment. Treatment strategies must be directed toward lowering of ROS levels to keep only a small amount necessary to maintain normal cell function.

Key words: Oxidative stress, Reactive oxygen species, male infertility, Oxidative stress status

Full Text

The Full Text of this article is available as a PDF (100.4 KB).

References

  • 1.Hull M., Glazener C., Kelly N., Conway D., Foster P., Hunton R., Coulson C., Lambert P., Watt E., Desai K. Population study of causes, treatment and outcome of infertility. Br Med J. 1985;291:1693–1697. doi: 10.1136/bmj.291.6510.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Maneesh M., Jayalekshmi H., Dutta S., Chakrabarti A., Vasudevan D. M. Effect of chronic ethanol administration on testicular antioxidant system and steroidogenic enzymes in rats. Ind. J. of Exp. Biol. 2005;43:445–449. [PubMed] [Google Scholar]
  • 3.Maneesh M., Jayalekshmi H., Singh T. A., Chakrabarti A. Impaired hypothalamic pituitary gonadal axis function in men with diabetes mellitus. Ind. J. of Clin. Biochem. 2006;21(1):165–168. doi: 10.1007/BF02913088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Koppenol W., Moreno J., Pryor W., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chemical Res. in Toxicol. 1992;5:834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  • 5.Sikka S. C. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front. Biosci. 1996;1:78–86. doi: 10.2741/a146. [DOI] [PubMed] [Google Scholar]
  • 6.Alvarez J. G., Storey B. T. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 1995;42:334–346. doi: 10.1002/mrd.1080420311. [DOI] [PubMed] [Google Scholar]
  • 7.Armstrong J. S., Rajasekaran M., Hellstrom W. J., Sikka S. C. Antioxidant potential of human serum albumin: role in the recovery of high quality human spermatozoa for assisted reproductive technology. J. Androl. 1998;19:412–419. [PubMed] [Google Scholar]
  • 8.Alvarez J. G., Touchstone J. C., Blasco L., Storey B. T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 1987;8:338–348. doi: 10.1002/j.1939-4640.1987.tb00973.x. [DOI] [PubMed] [Google Scholar]
  • 9.Aitken R. J., Paterson M., Fisher H., Buckingham D. W., Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell. Sci. 1995;8:2017–2025. doi: 10.1242/jcs.108.5.2017. [DOI] [PubMed] [Google Scholar]
  • 10.Calvin H. I., Cooper G. W., Wallace E. W. Evidence that selenium in rat sperm is associated with a cysteine rich structural proteins of the mitochondrial capsule. Gamete Res. 1981;4:139–145. doi: 10.1002/mrd.1120040208. [DOI] [Google Scholar]
  • 11.Lenzi A., Picardo M., Gandini L., Lombardo F., Terminali O., Passi S., Dondero F. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum. Reprod. 1994;9:2044–2050. doi: 10.1093/oxfordjournals.humrep.a138391. [DOI] [PubMed] [Google Scholar]
  • 12.Irvine D. S. Glutathione as a treatment for male infertility. Reviews of Reprod. 1996;1:6–12. doi: 10.1530/ror.0.0010006. [DOI] [PubMed] [Google Scholar]
  • 13.Wefers H., Sies H. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur J Biochem. 1988;174:353–357. doi: 10.1111/j.1432-1033.1988.tb14105.x. [DOI] [PubMed] [Google Scholar]
  • 14.Maneesh M., Jayalekshmi H., Dutta S., Chakrabarti A., Vasudevan D. M. Experimental therapeutical intervention with ascorbic acid in ethanol induced testicular injuries in rats. Ind. J. of Exp. Biol. 2005;43:172–176. [PubMed] [Google Scholar]
  • 15.Buettner G. R. The pecking order of free radicals and antioxidants, lipid peroxidation, alpha-tocopherol and ascorbate. Arch. Biochem. Biophys. 1993;300:535–543. doi: 10.1006/abbi.1993.1074. [DOI] [PubMed] [Google Scholar]
  • 16.Sies H. Strategies of antioxidant defence. Eur. J. Biochem. 1993;215:213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x. [DOI] [PubMed] [Google Scholar]
  • 17.Iwasaki A., Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992;57:409–416. doi: 10.1016/s0015-0282(16)54855-9. [DOI] [PubMed] [Google Scholar]
  • 18.Sikka S. C., Rajasekaran M., Hellstrom H. J. Role of oxidative stress and antioxidants in male infertility. J. Androl. 1995;16:464–468. [PubMed] [Google Scholar]
  • 19.Joyce D. A. Oxygen radicals in disease. Adverse Drug Reaction Bull. 1987;127:476–479. doi: 10.1097/00012995-198712000-00001. [DOI] [Google Scholar]
  • 20.Sharma R. K., Agarwal A. Role of reactive oxygen species in male infertility [review] Urology. 1996;48:835–850. doi: 10.1016/S0090-4295(96)00313-5. [DOI] [PubMed] [Google Scholar]
  • 21.Rajasekaran, M., Hellstrom, W. J. and Sikka, S. C. (1996) Quantitative assessment of cytokines (GRO-a and IL-10) in human seminal plasma during genitourinary inflammation. Am. J. Reprod. Immun. 36. [DOI] [PubMed]
  • 22.Thomas J., Fishel S. B., Hall J. A., Green S., Newton T. A., Thornton S. J. Increased polymorphonuclear granulocytes in seminal plasma in relation to sperm morphology. Hum. Reprod. 1997;12:2418–2421. doi: 10.1093/humrep/12.11.2418. [DOI] [PubMed] [Google Scholar]
  • 23.Wolff H. The biologic significance of white blood cells in semen. Fertil. Steril. 1995;63:1143–1147. doi: 10.1016/s0015-0282(16)57588-8. [DOI] [PubMed] [Google Scholar]
  • 24.Tomlinson M. J., Barrat G. L. R., Cooke I. D. Prospective study of leukocytes and leukocyte subpopulations in semen suggests that they are not a cause of male infertility. Fertil. Steril. 1993;60:1069–1075. doi: 10.1016/s0015-0282(16)56412-7. [DOI] [PubMed] [Google Scholar]
  • 25.Kessopoulou E., Tomlinson M. J., Barratt C. L., Bolton A. E., Cooke I. D. Origin of reactive oxygen species in human semen: spermatozoa or leucocytes? J. Reprod. Fertil. 1992;94:463–470. doi: 10.1530/jrf.0.0940463. [DOI] [PubMed] [Google Scholar]
  • 26.Krausz C., Mills C., Rogers S., Tan S. L., Aitken R. J. Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: relationships with motility and fertilizationin vitro. Fertil. Steril. 1994;62:599–605. doi: 10.1016/s0015-0282(16)56952-0. [DOI] [PubMed] [Google Scholar]
  • 27.Iwasaki A., Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992;57:409–416. doi: 10.1016/s0015-0282(16)54855-9. [DOI] [PubMed] [Google Scholar]
  • 28.Aitken R. J., Clarkson J. S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 1987;81:459–469. doi: 10.1530/jrf.0.0810459. [DOI] [PubMed] [Google Scholar]
  • 29.Ollero M., Gil-Guzman E., Lopez M. C., Sharma R. K., Agarwal A., Larson K. L. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum. Reprod. 2001;16:1912–1921. doi: 10.1093/humrep/16.9.1912. [DOI] [PubMed] [Google Scholar]
  • 30.Gil-Guzman E., Ollero M., Lopez M. C., Sharma R. K., Alvarez J. G., Thomas A. J. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum. Reprod. 2001;16:1922–1930. doi: 10.1093/humrep/16.9.1922. [DOI] [PubMed] [Google Scholar]
  • 31.Laboratory manual for the examination of human semen and sperm-cevical mucus interaction. 4th ed. New York: Cambridge University Press; 1999. [Google Scholar]
  • 32.Kruger T. F., Acosta A. A., Simmons K. F., Swanson R. J., Matta J. F., Weeck L. L. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology. 1987;30:248–251. doi: 10.1016/0090-4295(87)90246-9. [DOI] [PubMed] [Google Scholar]
  • 33.Agarwal A., Ikemoto I., Loughlin K. R. Levels of reactive oxygen species before and after sperm preparation: comparison of swim-up and L4 filtration methods. Arch. Androl. 1992;32:169–174. doi: 10.3109/01485019408987783. [DOI] [PubMed] [Google Scholar]
  • 34.Agarwal A., Ikemoto I., Loughlin K. R. Effect of sperm washing on reactive oxygen species level in semen. Arch. Androl. 1994;33:157–162. doi: 10.3109/01485019408987819. [DOI] [PubMed] [Google Scholar]
  • 35.Shekarriz M., Thomas A. J., Agarwal A. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur. Urol. 1995;28:31–35. doi: 10.1159/000475016. [DOI] [PubMed] [Google Scholar]
  • 36.Lopes S., Jurisicova A., Sun J., Casper R. F. Reactive oxygen species: a potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 1998;13:896–900. doi: 10.1093/humrep/13.4.896. [DOI] [PubMed] [Google Scholar]
  • 37.Zini A., Finelli A., Phang D., Jarvi K. Influence of semen processing on human sperm DNA integrity. Urology. 2000;56:1081–1084. doi: 10.1016/S0090-4295(00)00770-6. [DOI] [PubMed] [Google Scholar]
  • 38.Aitken R. J., Krausz C., Buckingham D. Relationship between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation and the presence of leukocytes and precursor germ cells in human sperm suspension. Mol. Reprod. Dev. 1994;39:268–279. doi: 10.1002/mrd.1080390304. [DOI] [PubMed] [Google Scholar]
  • 39.Rajasekaran M., Hellstrom W. J., Naz R. K., Sikka S. C. Oxidative stress and interleukins in seminal plasma during leukocytospermia. Fertil. Steril. 1995;64:166–171. [PubMed] [Google Scholar]
  • 40.Shekarriz M., Sharma R. K., Thomas A. J., Agarwal A. Positive myeloperoxidase staining (Endtz Test) as an indicator of excessive reactive oxygen species formation in semen. J. Assist. Reprod. Genet. 1995;12:70–74. doi: 10.1007/BF02211372. [DOI] [PubMed] [Google Scholar]
  • 41.Pasqualotto F. F., Sharma R. K., Agarwal A., Nelson D. R., Thomas A. J., Potts J. M. Seminal oxidative stress in chronic prostatitis patients. Urology. 2000;55:881–885. doi: 10.1016/S0090-4295(99)00613-5. [DOI] [PubMed] [Google Scholar]
  • 42.Saran M., Beck-Speier I., Fellerhoff B., Bauer G. Phagocytic killing of microorganisms by radical processes: consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Radic. Biol. Med. 1999;26:482–490. doi: 10.1016/S0891-5849(98)00187-7. [DOI] [PubMed] [Google Scholar]
  • 43.Ochsendorf F. R. Infections in the male genital tract and reactive oxygen species. Hum. Reprod. 1999;5:399–420. doi: 10.1093/humupd/5.5.399. [DOI] [PubMed] [Google Scholar]
  • 44.Sharma R., Pasqualotto F. F., Nelson D. R., Thomas A. J., Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001;22:575–583. [PubMed] [Google Scholar]
  • 45.Kovalski N. N., Lamirande E., Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effects of seminal plasma and scavengers. Fertil. Steril. 1992;58:809–816. [PubMed] [Google Scholar]
  • 46.Saleh R. A., Agarwal A., Kandirali E., Sharma R. K., Thomas A. J., Nada E. A. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil. Steril. 2002;78:1215–1224. doi: 10.1016/S0015-0282(02)04237-1. [DOI] [PubMed] [Google Scholar]
  • 47.Spitteler G. Review: on the chemistry of oxidative stress. J. Lipid Mediat. 1993;7:77–82. [PubMed] [Google Scholar]
  • 48.Jannsen Y. M., Van-Houton B., Borm P. J., Mossuran B. T. Cell and tissue responses to oxidative damage. Lab. Invest. 1993;69:261–265. [PubMed] [Google Scholar]
  • 49.Lamirande E., Jiang H., Zini A., Kodoma H., Gagnon C. Reactive oxygen species (ROS) and sperm physiology. Rev. Reprod. 1997;2:48–54. doi: 10.1530/ror.0.0020048. [DOI] [PubMed] [Google Scholar]
  • 50.Sikka S. C., Rajasekaran M., Hellstrom W. J. G. Role of oxidative stress and antioxidants in male-infertility. J. Androl. 1995;16:464–468. [PubMed] [Google Scholar]
  • 51.Halliwell b. How to characterize a biological antioxidant. Free Radic. Res. Commun. 1990;9:1–32. doi: 10.3109/10715769009148569. [DOI] [PubMed] [Google Scholar]
  • 52.Aitken R. J., Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioassays. 1994;16:259–267. doi: 10.1002/bies.950160409. [DOI] [PubMed] [Google Scholar]
  • 53.Lenzi A., Cualosso F., Gandini L., Lombardo F., Dondero F. Placebo controlled, double-blind, cross-over trial of glutathione therapy, in male infertility. Hum. Reprod. 1993;9:2044–2050. doi: 10.1093/oxfordjournals.humrep.a137909. [DOI] [PubMed] [Google Scholar]
  • 54.Agarwal A., Ikemoto I., Loughlin K. R. Relationship of sperm parameters to levels of reactive oxygen species in semen specimens. J. Urol. 1994;152:107–110. doi: 10.1016/s0022-5347(17)32829-x. [DOI] [PubMed] [Google Scholar]
  • 55.Ernster L. Lipid peroxidation in biological membranes: mechanisms and implications. In: Yagi K, editor. Active oxygen, lipid peroxides and antioxidants. Boca Raton: CRC Press; 1993. pp. 1–38. [Google Scholar]
  • 56.Darley-Usmar V., Wiseman H., Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Letters. 1995;369:131–135. doi: 10.1016/0014-5793(95)00764-Z. [DOI] [PubMed] [Google Scholar]
  • 57.Taourel D. B., Guerin M. C., Torreilles J. Is melonaldehyde a valuable indicator of lipid peroxidation? Biochem. Pharmacol. 1992;44:985–988. doi: 10.1016/0006-2952(92)90132-3. [DOI] [PubMed] [Google Scholar]
  • 58.Armstrong I. S., Rajasekaran M., Chamulitrat W., Gatti P., Hellstrom W. J., Sikka S. C. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic. Biol. Med. 1999;26:869–880. doi: 10.1016/S0891-5849(98)00275-5. [DOI] [PubMed] [Google Scholar]
  • 59.Lamirande E., Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum. Reprod. 1995;10:15–21. doi: 10.1093/humrep/10.suppl_1.15. [DOI] [PubMed] [Google Scholar]
  • 60.Aitken R. J. Molecular mechanisms regulating human sperm functions. Mol. Hum. Reprod. 1997;3:169–173. doi: 10.1093/molehr/3.3.169. [DOI] [PubMed] [Google Scholar]
  • 61.Grivaeu J. F., Dumont E., Renard B., Callegari J. P., Lannou D. L. Reactive oxygen species, lipid peroxidation and enzymatic defense systems in human spermatozoa. J. Reprod. Fertil. 1995;103:17–26. doi: 10.1530/jrf.0.1030017. [DOI] [PubMed] [Google Scholar]
  • 62.Twigg J., Irvine D. S., Aitken R. J. Oxidative damage to DNA in human spermatozoa does not, preclude pronucleous formation at intracytoplamic sperm injection. Hum. Reprod. 1998;13:1864–1871. doi: 10.1093/humrep/13.7.1864. [DOI] [PubMed] [Google Scholar]
  • 63.Duru N. K., Morshedi M., Ochninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0. [DOI] [PubMed] [Google Scholar]
  • 64.Aitken R. J., Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506. doi: 10.1530/rep.0.1220497. [DOI] [PubMed] [Google Scholar]
  • 65.Aitken R. J., West K. M., Buckingham D. W. Leoukocyte infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J. Androl. 1994;15:343–352. [PubMed] [Google Scholar]
  • 66.Fraga G. G., Motchnik P. A., Shigenaga M. K., Helbrock J. H., Jacob R. A., Ames Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA. 1991;88:11003–11006. doi: 10.1073/pnas.88.24.11003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Sun J. G., Jurisicova A., Casoer R. F. Detection of deoxyribonucleic acid fragmentation human sperm: correlation with fertilization in vitro. Biol. Reprod. 1997;56:519–524. doi: 10.1095/biolreprod56.3.602. [DOI] [PubMed] [Google Scholar]
  • 68.Cummins J. M., Jequier A. M., Raymons K. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Rep and Dev. 1994;37:345–362. doi: 10.1002/mrd.1080370314. [DOI] [PubMed] [Google Scholar]
  • 69.Aitken R. J., Baker M. A. Oxidative stress and male reproductive biology. Reproduction, Fertility and development. 2003;16(5):581–588. doi: 10.1071/RD03089. [DOI] [PubMed] [Google Scholar]
  • 70.Sentman C. L., Shutter J. R., Hockenbery D., Kanagawa O., Korsmeyer S. J. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thyocytes. Cell. 1991;67:879–888. doi: 10.1016/0092-8674(91)90361-2. [DOI] [PubMed] [Google Scholar]
  • 71.Maneesh M., Jayalekshmi H., Dutta S., Chakrabarti A., Vasudevan D. M. Role of oxidative stress in ethanol induced germ cell apoptosis—an experimental study in rats. Ind. J. of Clin. Biochem. 2005;20(2):62–67. doi: 10.1007/BF02867402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Lee J., Richburg J. H., Yonkin S. C., Bockelheide K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology. 1997;138:2081–2088. doi: 10.1210/en.138.5.2081. [DOI] [PubMed] [Google Scholar]
  • 73.Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993;262:1274–1277. doi: 10.1126/science.8235659. [DOI] [PubMed] [Google Scholar]
  • 74.Bar-Chama N., Lamb D. Evaluation of sperm function. What is available in the modern andrology laboratory? Urologic Clinics of North Am. 1994;21:433–446. [PubMed] [Google Scholar]
  • 75.Gagnon C., Iwasaki A., Lamirande E., Kovalski N. Reactive oxygen species and human spermatozoa. Ann NY Acad Sci. 1991;637:436–444. doi: 10.1111/j.1749-6632.1991.tb27328.x. [DOI] [PubMed] [Google Scholar]
  • 76.Rajasekaran M., Hellstrom W. J., Naz R. K., Sikka S. C. Oxidative stress and interleukins in seminal plasma during leukocytospermia. Fertil. Steril. 1995;64:166–171. [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES