Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2006 Sep;21(2):4–11. doi: 10.1007/BF02912904

Genetic determinants of hyperhomocysteinemia in atherosclerosis

Farah F Eghlim 1, Tester F Ashavaid 1,, Kappiareth G Nair 1
PMCID: PMC3454005  PMID: 23105606

Abstract

Hyperhomocysteinemia (Hhcy) is an independent risk factor for the development of atherosclerosis. The mechanisms by which HHcy promotes cardiovascular disease may be due to activation of pro-inflammatory factors, endoplasmic reticulum (ER) stress and oxidative stress. We aimed to study (i) gene mutations that cause HHcy. (ii) Estimation of inflammatory marker like ultrasenitive C-reactive proteins (hs-CRP) and total antioxidant levels (iii) determination of Hcy- dependent gene expression in vivo. 25 HHcy patients and 25 healthy controls were taken for this study. Mutation detection in MTHFR, CBS, MS and eNOS gene was by PCR-based restriction enzyme analysis and subsequently expression study was carried out by Reverse Transcriptase PCR and cloning technique. A significant association of HHcy with MTHFR (C677T) and MS (A2756G) genotype was observed (p<0.05). There was no association of Hhcy and eNOS genotype. The Hhcy patients, showed no expression of the ER stress gene, GRP78 in lymphocytes. Our study showed no effect of Hcy on the CD18 gene (pro-inflammatory pathway) expression, but a significant association of tHcy and hs-CRP levels in HHcy grp (t=2.28, p<0.05). This shows that HHcy induces inflammatory response, which could lead to tissue injury in the pathogenesis of the atherosclerotic process. Our findings show higher mRNA expression of manganese superoxide dismutase (Mn SOD) in HHcy group as compared to the control group. The Total Antioxidant Status (TAS) estimated was found to be significantly lower in the HHcy group as compared to healthy normals (t=4.8, p<0.01). Taken together these findings strongly suggest that the adverse effects of homocysteine are at least partly mediated by oxidative stress. Our study supports the hypothesis that Hcy evokes adverse vascular effects by promoting oxidative damage to endothelial cells.

Key words: Hyperhomocysteinemia, Atherosclerosis, MTHFR, MS, eNOS, CBS

Full Text

The Full Text of this article is available as a PDF (124.0 KB).

References

  • 1.Homocyst(e) inemia and atherosclerosis. (1996) NIH Guide Vol.25, No. 25
  • 2.Clarke R., Daly L., Robinson K. Hyperhomocysteinemia: an independent risk factor for vascular for vascular disease. N. Eng. J. Med. 1991;3324:1149–55. doi: 10.1056/NEJM199104253241701. [DOI] [PubMed] [Google Scholar]
  • 3.Robinson K., Mayer E., Jacobsen D.W. Homocysteine and coronary artery disease. Cleve. Clin. J. Med. 1994;61:438–5. doi: 10.3949/ccjm.61.6.438. [DOI] [PubMed] [Google Scholar]
  • 4.Nair K.G., Nair S.R., Ashavaid T.F. Eghlim, F.F. The Genetic Basis of Hyperhomocysteinemia. Indian Heart Journal. 2000;52:16–17. [PubMed] [Google Scholar]
  • 5.Brown, K., Kluijtmans, L., Young, I., Woodside, J., Yamell, J., Mcmaster, D. and Murray, L. et al. (2003) Genetic evidence that Nitric oxide (NO) modulates homocysteine. Arterioscler Thromb Vasc. Biol. 1014–1020. [DOI] [PubMed]
  • 6.Outinen P.A., Sood S.K.N., Pfeiffer S.I. Homocysteine-Induced Endoplasmic Reticulum Stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood. 1999;3:959–967. [PubMed] [Google Scholar]
  • 7.Kokame K., Kato H., Miyata T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis: GRP78 and novel genes. J. Biol. Chem. 1998;271:29659–29659. doi: 10.1074/jbc.271.47.29659. [DOI] [PubMed] [Google Scholar]
  • 8.Ashavaid T.F., Eghlim F.F., Shalia K.K., Nair K.G. Determination of Homocysteine using DTT as reductant. Indian Journal of Clinical Biochemistry. 2003;18(2):106–110. doi: 10.1007/BF02867375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleasted cells. Nucleic Acid research. 1988;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Frosst P., Blom H.J., Milos R. A candidate genetic factor for vascular disease: a comon mutation in methylenetetrahydrofolate reductase. Nat. Genetics. 1995;10:111–3. doi: 10.1038/ng0595-111. [DOI] [PubMed] [Google Scholar]
  • 11.Tsai M.Y., Hansom N.Q., Schwichtenberg K., Garg U. Amplification refractory mutation system to identify mutations in cystathionine B-synthase deficiency. Clin. Chem. 1995;41(12):1175–7. [PubMed] [Google Scholar]
  • 12.Leclerc D., Campeau E., Goyette P., Adjalla C.E., Christensen B., Ross M., Eydoux P., Rosenbaltt D.S., Rozen R., Gravel R.A. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cbIG complementation group of folate/cobalamin disorders. Hum. Mol. Genet. 1996;5:1867–1874. doi: 10.1093/hmg/5.12.1867. [DOI] [PubMed] [Google Scholar]
  • 13.Colombo M.G., Paradossi U., Andreassi M., Botto N., Manfredi S., Maseti S., Biagini A., Clerico A. Endothelial Nitric oxide Synthase gene polymorphisms and risk of coronary artery disease. Clin. Chem. 2003;49:3–3. doi: 10.1373/49.3.389. [DOI] [PubMed] [Google Scholar]
  • 14.Nair, K.G., Nair, S.R., Ashaviad T.F. and Eghlim, F.F. (2002) MTHFR gene mutationand hyperhomocysteinemia as a risk factor for CHD in the Indian population. JAPI vol. 50 May (Suppl.) [PubMed]
  • 15.Kluijtman L.A.J., Heuvel I.P., Boers G.H.J., et al. Molecular genetic analyses in mild Hyperhomocysteinemia: a common mutation in the MTHFR gene is a genetic risk factor for CVD. Am. J. Hum. Genet. 1996;58:35–41. [PMC free article] [PubMed] [Google Scholar]
  • 16.Morita H., Kurihara H., Sugiyama T., et al. Genetic polymorphism of MTHFR and MS association with homocysteine metabolism and late onset vascualr disease in the Japenese population. J. Cardiol. 1999;33(2):2–2. [PubMed] [Google Scholar]
  • 17.Chen L.H., Li M.L., Hwang H.H., Chen L.S., Korenberg J., Shane B. Human methionine synthase cDNA cloning, gene localization and expression. J. Biol. Chem. 1997;272:3628–3634. doi: 10.1074/jbc.272.6.3628. [DOI] [PubMed] [Google Scholar]
  • 18.Li YN, Gulati S., Baker P.J. Cloning, mapping, and RNA analysis of the human methionine synthase gene. Hum. Mol. Genet. 1996;5:1851–1853. doi: 10.1093/hmg/5.12.1851. [DOI] [PubMed] [Google Scholar]
  • 19.Moncada, Higgs A. The L-arginine nitric oxide pathway. N. Engl. J. Med. 1993;329:2002–12. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  • 20.Halcox J.P., Schenke W.H., Zalos G., et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–658. doi: 10.1161/01.CIR.0000025404.78001.D8. [DOI] [PubMed] [Google Scholar]
  • 21.Celermajer D.S., Sorensen K.E., Bull C., Robinson J., Deafield J.E. Endothelial—dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factor and their interaction. J. Am. Coll. Cordiol. 1994;24:1468–74. doi: 10.1016/0735-1097(94)90141-4. [DOI] [PubMed] [Google Scholar]
  • 22.Wang X.L., Sim A.S., Wang M.X., Murrell G.A.C., Trudinger B., Wang J. Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. Febs letter. 2000;471:45–50. doi: 10.1016/S0014-5793(00)01356-9. [DOI] [PubMed] [Google Scholar]
  • 23.Hingorani A.D. Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis. 2001;154:521–527. doi: 10.1016/S0021-9150(00)00699-7. [DOI] [PubMed] [Google Scholar]
  • 24.Gou X., Dudman N.P. Homocysteine alters monocyte-endothelial interaction in vitro. Chin. Med. J. (Engl) 2003;116(1):34–8. [PubMed] [Google Scholar]
  • 25.Gou X., Dudman N.P. Homocysteine induces expression of adhesive molecules on leukocytes in whole blood. Chin. Med. J. (Engl) 2001;114(12):1235–9. [PubMed] [Google Scholar]
  • 26.Kinscherf R., Deigner H.P., Usinger C., et al. Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidised LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB journal. 1997;11:1317–1328. doi: 10.1096/fasebj.11.14.9409551. [DOI] [PubMed] [Google Scholar]
  • 27.McKenchnie R., Rubenfire M., Abor A. The role of inflammation and infection in coronary artery disease: a clinical perspective. ACC Curr. J. Rev. 2002;11:32–4. doi: 10.1016/S1062-1458(01)00531-1. [DOI] [Google Scholar]
  • 28.Starkbeum G., Harlam J.M. Endothelial cell injury due to copper- catalyzed hydrogen peroxide generation from homocysteine. J. Clin. Invst. 1986;77:1370–6. doi: 10.1172/JCI112442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.deFerranti S., Rifai N. C—reactive protein and cardiovascular disease: a review of risk prediction and interventions. Clin. Chim. Acta. 2003;317:1–15. doi: 10.1016/S0009-8981(01)00797-5. [DOI] [PubMed] [Google Scholar]
  • 30.Alexander S. Predicting prognosis after myocardial infarction. JAMA. 1994;272(19):1543–1543. doi: 10.1001/jama.272.19.1543. [DOI] [PubMed] [Google Scholar]
  • 31.Zheng X., Dai J., Remick D.G., Wang X. Homocysteine mediated expression and secretion of monocytes chemoattractant protein—1 and interleukin—8 in human monocytes. Cir. Res. 2003;93:311–20. doi: 10.1161/01.RES.0000087642.01082.E4. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES