Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(13):4227–4231. doi: 10.1073/pnas.81.13.4227

Solubilization and characterization of thyrotropin-releasing hormone receptors from rat brain.

W A Johnson, N M Nathanson, A Horita
PMCID: PMC345402  PMID: 6330752

Abstract

The thyrotropin-releasing hormone receptor from rat brain was solubilized in a stable unbound form. The natural glycoside digitonin was the only detergent of a variety tested capable of solubilizing the active receptor. The digitonin-solubilized receptor exhibited binding kinetics for 3-[3H]methylhistidine thyrotropin-releasing hormone virtually identical to membrane preparations and responded with a similar order of potency to a series of thyrotropin-releasing hormone analogues that inhibit binding of the labeled ligand. Gel filtration analysis and sucrose density gradient centrifugation indicated a Stokes radius of 5.2 nm, a sedimentation coefficient of 11.2 s, and a corresponding calculated molecular weight of 244,000 for the detergent-receptor complex. The soluble receptor shows a gradual loss of binding activity over 48 to 72 hr when kept at 4 degrees C. However, the preparation may be frozen at -20 degrees C with no significant loss of activity.

Full text

PDF
4227

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brownstein M. J., Palkovits M., Saavedra J. M., Bassiri R. M., Utiger R. D. Thyrotropin-releasing hormone in specific nuclei of rat brain. Science. 1974 Jul 19;185(4147):267–269. doi: 10.1126/science.185.4147.267. [DOI] [PubMed] [Google Scholar]
  2. Burt D. R., Taylor R. L. Binding sites for thyrotropin-releasing hormone in sheep nucleus accumbens resemble pituitary receptors. Endocrinology. 1980 May;106(5):1416–1423. doi: 10.1210/endo-106-5-1416. [DOI] [PubMed] [Google Scholar]
  3. CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
  4. Catterall W. A., Morrow C. S., Hartshorne R. P. Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J Biol Chem. 1979 Nov 25;254(22):11379–11387. [PubMed] [Google Scholar]
  5. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  6. Drust D. S., Martin T. F. Thyrotropin-releasing hormone rapidly and transiently stimulates cytosolic calcium-dependent protein phosphorylation in GH3 pituitary cells. J Biol Chem. 1982 Jul 10;257(13):7566–7573. [PubMed] [Google Scholar]
  7. Galper J. B., Klein W., Catterall W. A. Muscarinic acetylcholine receptors in developing chick heart. J Biol Chem. 1977 Dec 10;252(23):8692–8699. [PubMed] [Google Scholar]
  8. Gautvik K. M., Gordeladze J. O., Jahnsen T., Haug E., Hansson V., Lystad E. Thyroliberin receptor binding and adenylyl cyclase activation in cultured prolactin-producing rat pituitary tumor cells (GH cells). J Biol Chem. 1983 Sep 10;258(17):10304–10311. [PubMed] [Google Scholar]
  9. HUBBARD R. The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. J Gen Physiol. 1954 Jan 20;37(3):381–399. doi: 10.1085/jgp.37.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hess G. P., Bulger J. E., Fu J. J., Hindy E. F., Silberstein R. J. Allosteric interactions of the membrane-bound acetylcholine reception: kinetic studies with alpha-bungarotoxin. Biochem Biophys Res Commun. 1975 Jan 2;64(3):1018–1027. doi: 10.1016/0006-291x(75)90149-7. [DOI] [PubMed] [Google Scholar]
  11. Hinkle P. M., Kinsella P. A. Rapid temperature-dependent transformation of the thyrotropin-releasing hormone-receptor complex in rat pituitary tumor cells. J Biol Chem. 1982 May 25;257(10):5462–5470. [PubMed] [Google Scholar]
  12. Hinkle P. M., Lewis D. G. Solubilization of pituitary receptors for thyrotropin-releasing hormone. Biochim Biophys Acta. 1978 Jul 3;541(3):347–359. doi: 10.1016/0304-4165(78)90194-0. [DOI] [PubMed] [Google Scholar]
  13. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  14. Metcalf G. Regulatory peptides as a source of new drugs--the clinical prospects for analogues of TRH which are resistant to metabolic degradation. Brain Res. 1982 Nov;257(3):389–408. doi: 10.1016/0165-0173(82)90012-1. [DOI] [PubMed] [Google Scholar]
  15. Morley J. E. Extrahypothalamic thyrotropin releasing hormone (TRH) -- its distribution and its functions. Life Sci. 1979 Oct 29;25(18):1539–1550. doi: 10.1016/0024-3205(79)90435-1. [DOI] [PubMed] [Google Scholar]
  16. Neer E. J. The size of adenylate cyclase. J Biol Chem. 1974 Oct 25;249(20):6527–6531. [PubMed] [Google Scholar]
  17. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  18. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  19. Prasad C., Peterkofsky A. Demonstration of pyroglutamylpeptidase and amidase activities toward thyrotropin-releasing hormone in hamster hypothalamus extracts. J Biol Chem. 1976 Jun 10;251(11):3229–3234. [PubMed] [Google Scholar]
  20. Rebecchi M. J., Kolesnick R. N., Gershengorn M. C. Thyrotropin-releasing hormone stimulates rapid loss of phosphatidylinositol and its conversion to 1,2-diacylglycerol and phosphatidic acid in rat mammotropic pituitary cells. Association with calcium mobilization and prolactin secretion. J Biol Chem. 1983 Jan 10;258(1):227–234. [PubMed] [Google Scholar]
  21. Schaeffer J. M., Axelrod J., Brownstein M. J. Rigional differences in dopamine-mediated release of TRH-like material from synaptosomes. Brain Res. 1977 Dec 23;138(3):571–574. doi: 10.1016/0006-8993(77)90696-5. [DOI] [PubMed] [Google Scholar]
  22. Schlesinger M. J., Barrett K. The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem. 1965 Nov;240(11):4284–4292. [PubMed] [Google Scholar]
  23. Simasko S. M., Horita A. Characterization and distribution of 3H-(3MeHis2)thyrotropin releasing hormone receptors in rat brain. Life Sci. 1982 May 24;30(21):1793–1799. doi: 10.1016/0024-3205(82)90315-0. [DOI] [PubMed] [Google Scholar]
  24. Tan K. N., Tashjian A. H., Jr Receptor-mediated release of plasma membrane-associated calcium and stimulation of calcium uptake by thyrotropin-releasing hormone in pituitary cells in culture. J Biol Chem. 1981 Sep 10;256(17):8994–9002. [PubMed] [Google Scholar]
  25. Taylor R. L., Burt D. R. Species differences in the brain regional distribution of receptor binding for thyrotropin-releasing hormone. J Neurochem. 1982 Jun;38(6):1649–1656. doi: 10.1111/j.1471-4159.1982.tb06646.x. [DOI] [PubMed] [Google Scholar]
  26. Yarbrough G. G. Studies on the neuropharmacology of thyrotropin releasing hormone (TRH) and a new TRH analog. Eur J Pharmacol. 1978 Mar 1;48(1):19–27. doi: 10.1016/0014-2999(78)90040-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES