Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 1997 Dec;12(1):49–54. doi: 10.1007/BF02867955

Characterisation of the canine cardiac sarcolemma in experimental myocardial ischemia

T J Netticadan 1, T F Ashavaid 1,, K G Nair 1
PMCID: PMC3454035  PMID: 23100863

Abstract

The cardiac sarcolemma was characterized in 13 normal and 11 ischemic dog hearts by enzyme analysis and compositional assays. Significant decreases in the activities of the sodium-potassium and calcium pumps and structural compositional disturbances were observed in ischemia. High concentrations of oleic acid, a fatty acid and palmitoyl carnitine, a fatty acid intermediate caused inhibition of the enzyme pump activities of the normal sarcolemma. Thus, ischemia results in the functional impairment of the sarcolemma. Accumulation of fatty acid and fatty acid intermediates, occurring in myocardial ischemia, could be an underlying mechanism.

Key Words: Myocardial ischaemia, canine cardiac sarcolemma

Full Text

The Full Text of this article is available as a PDF (620.6 KB).

References

  • 1.Fleckenstein A., Janke J., Doring H.J., Pachinger O. Ca overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Rec. Adv. Stud. Card. Met. 1973;2:455–466. [PubMed] [Google Scholar]
  • 2.Dhalla N.S., Panagia V., Singal P.K., Makino N., Dixon I.M.C., Eyolfson D.A. Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 1988;20(Suppl II):3–13. doi: 10.1016/0022-2828(88)90327-6. [DOI] [PubMed] [Google Scholar]
  • 3.Daly M.J., Elz J.S., Nayler W.G. Sarcolemma enzymes and Na+—Ca2+ exchange in hypoxic, ischemic and reperfused rat hearts. Am. J. Physiol. 1984;247:4237–4243. doi: 10.1152/ajpheart.1984.247.2.H237. [DOI] [PubMed] [Google Scholar]
  • 4.Katz A.M., Messineo F.C. Lipid-membrane interations and pathogenesis of ischemic damage in the myocardium. Circ. Res. 1981;48:1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
  • 5.Chien K.R., Reeves J.P., Buja L.M., Bonte F., Parkey R.W., Willerson J.T. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-ppi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ. Res. 1981;48:711–718. doi: 10.1161/01.res.48.5.711. [DOI] [PubMed] [Google Scholar]
  • 6.Jones L.R., Maddock S.K., Besch H.R. Unmasking effect of alamethicin on the (Na+, K+) ATPase, β-adrenergic receptor coupled adenylate cyclase and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J. Biol. Chem. 1980;255:9971–9980. [PubMed] [Google Scholar]
  • 7.Colvin R.A., Ashavaid T.F., Herbette L.G. Structure function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor site densities. Biochim. Biophys. Acta. 1985;812:601–608. doi: 10.1016/0005-2736(85)90253-6. [DOI] [PubMed] [Google Scholar]
  • 8.Sotocasa G.L., Kuystiema L., Ernster A., Bergtrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J. Cell. Biol. 1967;32:415–422. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Holmquist B., Bunning P., Riordan J.F. A continuous spectrophotometric assay for angiotensin converting enzyme. Anal. Biochem. 1979;95:540–548. doi: 10.1016/0003-2697(79)90769-3. [DOI] [PubMed] [Google Scholar]
  • 10.Chen P.S., Toribara T.Y., Warner H. Micro determination of Phosphorus. Anal. Chem. 1956;28:1756–1760. doi: 10.1021/ac60119a033. [DOI] [Google Scholar]
  • 11.Kerscher L.M., Town M.H., Zeigelhom H.J. The combined determination of 2 parameters on the same sample in the same cuvette using the Hitachi 705. Clin. Chem. 1985;31:908–914. [Google Scholar]
  • 12.Trinder P. Determination of glucose in blood by oxidase with alternative oxygen acceptor. Ann. Clin. Biochem. 1969;6:24–30. [Google Scholar]
  • 13.Tibbits G.F., Sasaki M., Ikeda M., Shimada K., Tsuruhara T., Nagatomo T. Characterisation of the rat myocardial sarcolemma. J. Mol. Cell. Cardiol. 1981;13:27–35. doi: 10.1016/0022-2828(81)90295-9. [DOI] [PubMed] [Google Scholar]
  • 14.Takahashi K., Kako K.J. Ischemia-induced changes in sarcolemma [Na+ K+] ATPase, K-pNPPsase, sialic acid and phospholipid in th dog and effects of Nisoldipine and Chlorpromazine treatment. Biochem. Med. 1984;31:271–286. doi: 10.1016/0006-2944(84)90083-8. [DOI] [PubMed] [Google Scholar]
  • 15.Beller G.A., Conray J., Smith T.W. Ischemia-induced alterations in myocardial [Na+, K+]-ATPase and cardiac glycoside binding. J. Clin. Invest. 1976;57:341–350. doi: 10.1172/JCI108285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Winston G.C., Spinale F.G., Crawford F.A., Scholte B.A. Immunocytochemical and enzyme histochemical localization of Na, K ATPase in normal and ischemic porcine myocardium. J. Mol. Cell. Cardiol. 1990;22:1071–1082. doi: 10.1016/0022-2828(90)90071-9. [DOI] [PubMed] [Google Scholar]
  • 17.Chemnitus J.M., Sasaki Y., Burger W., Bing R.J. The effect of ischemia and reperfusion on sarcolemmal formation in the perfused canine hearts. J. Mol. Cell. Cardiol. 1985;17:1139–1150. doi: 10.1016/S0022-2828(85)80110-3. [DOI] [PubMed] [Google Scholar]
  • 18.Dhalla N.S., Sulakhe P.V, Lamers J.M.J., Ganguly P.K., Elimban V. Behaviour of cardiac microsomal Ca2+ pump under conditions that may simulate pathological situations. Gen. Physiol. Biophys. 1985;4:15–27. [PubMed] [Google Scholar]
  • 19.Jenning R.B., Reimer K.A. Lethal myocardial ischemic injury. Am. J. Pathol. 1981;102:241–255. [PMC free article] [PubMed] [Google Scholar]
  • 20.Bolli R. Mechanism of myocardial stunning. Circulation. 1990;82:723–738. doi: 10.1161/01.cir.82.3.723. [DOI] [PubMed] [Google Scholar]
  • 21.Katz A.M., Reuter H. Cellular calcium and cardiac cell death. Am. J. Cardiol. 1979;44:188–190. doi: 10.1016/0002-9149(79)90270-4. [DOI] [PubMed] [Google Scholar]
  • 22.Murphy E., Jacob G., Leimerman M. Cytosolic fre calcium in chick heart cells: Its role in cell injury. J. Mol. Cell. Cardiol. 1985;17:221–231. doi: 10.1016/S0022-2828(85)80005-5. [DOI] [PubMed] [Google Scholar]
  • 23.Tobin T., Akera T., Baskin S.I., Brody T.M. Calcium ion and sodium and potassium-dependent adenosine triphosphatase: Its mechanism of inhibition and identification of the EI-P intermediate. Mol. Pharmacol. 1973;9:336–349. [PubMed] [Google Scholar]
  • 24.Yingst D.R. Modulation of the Na, K-ATPase by Ca and intracellular proteins. J. Mol. Cell. Cardiol. 23, Ann. Rev. Physiol. 1988;50:291–303. doi: 10.1146/annurev.ph.50.030188.001451. [DOI] [PubMed] [Google Scholar]
  • 25.Venter H., Genades P., Mouton R., Huisamen B., Harper I.S., Lochner A. Myocardial membrane cholesterol: Effects of Ischemia. J. Mol. Cell. Cardiol. 1991;23:1271–1286. doi: 10.1016/0022-2828(91)90084-Y. [DOI] [PubMed] [Google Scholar]
  • 26.Bester R., Lochner A. Sarcolemma phospholipid fatty acid composition and permeability. Biochem. Biophys. Acta. 1988;941:176–186. doi: 10.1016/0005-2736(88)90178-2. [DOI] [PubMed] [Google Scholar]
  • 27.Adams R.J., Cohen D.W., Gupte S., Johnson J.D., Wallick E.T., Wang T., Schwartz A. “In vitro” effects of palmitoyl carnitine on cardiac plasma membrane Na, K-ATPase and sarcoplasmic Ca-ATPase and Calcium transport. J. Biol. Chem. 1979;254:12404–12410. [PubMed] [Google Scholar]
  • 28.Lamers J.M.J., Hulsmann W.C. Inhibition of [Na+ K+] stimulated ATPase of heart by fatty acids. J. Mol. Cell. Cardiol. 1977;9:343–346. doi: 10.1016/S0022-2828(77)80039-4. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES