Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2000 Aug;15(Suppl 1):183–199. doi: 10.1007/BF02867558

Metalloporphyrins—Applications and clinical significance

Ramesh Chandra 1,2,, Manisha Tiwari 1, Parvinder Kaur 1, Meenakshi Sharma 1, Ritu Jain 1, Sujata Dass 1
PMCID: PMC3454067  PMID: 23105282

Abstract

The fascinating structures of naturally occurring porphyrins and metalloporphyrins have been perfected by nature to give functional dyes par excellence. The important roles these tetrapyrrolic macrocycles play in vital biological processes, in particular photosynthesis (chlorophyll), oxygen transport (hemoglobin), oxygen activation (cytochrome), have led to their characterization as ‘pigments of life’. Because porphyrins possess extended π-electron systems and exhibit stability, they are finding use, to an increasing extent, in advanced materials, as components in organic metals, molecular wires, and other devices. In medicine, porphyrins are experiencing a renaissance due to the advent of photodynamic therapy of great promise in the treatment of cancer and dermatological diseases. The interdisciplinary interest porphyrins thus generate has provided the impetus to develop Novel-porphyrin like molecules anticipated to exhibit special properties, by structural variation of the tetrapyrrolic macrocycle, while maintaining a (4n+2)π main conjugation pathway.

In addition to their esoteric application in science, porphyrins have been shown to have profound implications for therapeutic purposes. Their photosensitizing properties have led to their utilization in photodynamic therapy. Certain metalloporphyrins such as SnPP are being tested as drugs for the treatment of neonatal jaundice. Metalloporphyrins are serving as SOD mimetics to combat oxidative stress and a range of metalloporphyrin complexes have been proposed as contrast agents for magnetic resonance imaging

Key Words: Metalloporphyrin, Photodynamic Therapy, Photosensitization, Radiosensitizers

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

References

  • 1.Dubbleman, T.M.A.R. and Shuitmaker, J.J. (1990) Photosensitization. In: Selected Topics in Photobiology Eds. Jain, V. and Goel, H. Indian Photobiol. Soc. p. 95–131.
  • 2.Ali H., Vanlier J.E. Metal complexes as Photo- and Radiosensitizers. Chem. Rev. 1999;99:2379–2450. doi: 10.1021/cr980439y. [DOI] [PubMed] [Google Scholar]
  • 3.Lipson R.L., Baldes E.J., Olesen A.M. The use of a derivative of haematoporphyrin in tumor detection. J. Natl. Cancer. Inst. 1961;26:1–11. [PubMed] [Google Scholar]
  • 4.Dougherty T.J. Photosensitizer therapy and detection of malignant tumors. Photochem. Photobiol. 1978;45:879–889. doi: 10.1111/j.1751-1097.1987.tb07898.x. [DOI] [PubMed] [Google Scholar]
  • 5.Gomer C.J. Photodynamic therapy in the treatment of malignancies. Semin. Hematol. 1989;26:27–34. [PubMed] [Google Scholar]
  • 6.Bonett, R., Ridge, R.J. and Scourides, P.A. (1981) On the nature of haematoporphyrin derivative. J. Chem. Soc. Perkin 1, 3135–3140.
  • 7.Kessel G., Cheng Y. On the preparation and properties of dihematoporphyrin ether, the tumor-localizing component of HpD. Photochem. Photobiol. 1985;35:37–41. doi: 10.1111/j.1751-1097.1982.tb03808.x. [DOI] [PubMed] [Google Scholar]
  • 8.Valduga G., Novell S., Reddi E., Jori G., Broslavesky S.E. The production of singlet molecular oxygen by zinc(II) phthalocyanine in ethanol. Photochem. photobiol. 1998;48:1–5. doi: 10.1111/j.1751-1097.1988.tb02778.x. [DOI] [PubMed] [Google Scholar]
  • 9.Shopva, M. (1987) Photodynamic properties of porphyrin; Photodynamic therapy of cancer. In: Proceed. 4th Internat. Conf. Budapest, Chemistry and Biotecnology of Biologically Active Natural Products, 367–38.
  • 10.Grebenova D., Cajthamlova H., Bartosova J., Marinov J., Klamova H., Fuchj O., Hukal Z. Selective destruction of leukaemic cells by Photo-activation of 5-aminolaevulinic acid induced protoporphyrin IX. J Photochem. Photobiol. 1998;47(1):74–81. doi: 10.1016/S1011-1344(98)00206-1. [DOI] [PubMed] [Google Scholar]
  • 11.Jasat A., Dolphin D. Expanded Porphyrins and their Heterologs. Chem. Rev. 1997;97:2267–2340. doi: 10.1021/cr950078b. [DOI] [PubMed] [Google Scholar]
  • 12.Drummond G.S., Kappas A. Prevention of Neonatal hyperbilirubinemia by tin protoporphyrin (IX), a potent inhibitor of Heme Oxidation Proc. Natl. Acad. Sci. 1981;78:6466–6470. doi: 10.1073/pnas.78.10.6466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kappas A., Drummond G.S., Manola T., Petmezapi S., Vales T. Sn-Protoporphyrin use in the Management of Hyperbilirubinemia in Term. Newborn with Direct Coombs-Positive ABO Incompatibility. 1988;81(4):485–497. [PubMed] [Google Scholar]
  • 14.Mitrione S.M., Villalon P., Lutton J.D., Levere R.D., Abrahman N.G. Inhibition of Human Adult and Foetal heme Oxygenase by New Synthetic Heme Oxygenase by New Synthetic Heme Analogues. Am. J. Med. Sci. 1988;296(3):180–186. doi: 10.1097/00000441-198809000-00006. [DOI] [PubMed] [Google Scholar]
  • 15.Carnelius C.E., Rogeses P.A. Prevention of Neonatal hyperbilirubinemia in rhesus monkeys by Tin-Protopophyrin. Pediatr. Res. 1988;18:728–730. doi: 10.1203/00006450-198408000-00010. [DOI] [PubMed] [Google Scholar]
  • 16.Drummond G.S., Kappas A. Suppression of hyperbilirubinemia in the rat neonate by chromium protoporphyrin. J. Exp. Med. 1982;156:1878–1833. doi: 10.1084/jem.156.6.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Strebel L., Odell G.B. Bilirubin Uridine Diphospho-glucuronyltransferase in Rat Liver Microsomes Genetic Variation and maturation. Pediatr. Res. 1971;5:548–559. doi: 10.1203/00006450-197110000-00007. [DOI] [Google Scholar]
  • 18.Beri R., Chandra R. Chemistry and Biology of Heme: Effect of Metal salts, Organometals and Metalloporphyrin on Heme Synthesis and Catabolism, with special Reference to Clinical Implications and Interactions With Cytochrome P-450. Drug Metabolism Reviews. 1993;25(1&2):49–152. doi: 10.3109/03602539308993973. [DOI] [PubMed] [Google Scholar]
  • 19.Chandra R., Dhawan M., Malhotra R. Regulation of Hepatic Heme Oxygenase by CoMP. J. Inorg. Biochem. 1995;29(2&3):516–518. doi: 10.1016/0162-0134(95)97612-T. [DOI] [Google Scholar]
  • 20.Breslow E., Chandra R., Kappas A. Biochemical Properties of Heme Oxygenase inhibitor Sn-Protoporphyrin. J. Biol. Chem. 1986;261(7):3135–3141. [PubMed] [Google Scholar]
  • 21.Chandra R. Alterations in hepatic heme oxygenase activity by prolonged administration of excess bilirubin in rats. Clin. Chem and Enzymol. Commun. 1998;8:37–51. [Google Scholar]
  • 22.Kappas A., Drummond G.S. Control Of Heme Metabolism with synthetic. Metalloporphyrins. 1986;77:335–39. doi: 10.1172/JCI112309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Chandra R., Sharma A., Aneja R., Tiwari M. Zinc-protoporphyrin antagonises the gossypol mediated induction of hepatic and renal heme-oxygenase activity in vivo in rats. Clin. Chem. Enzym. Communs. 1998;8:73–82. [Google Scholar]
  • 24.Chandra R., Aneja R., Sharma A., Tiwari M. Retinoic Acid in Association with Tin-Metalloprphyrin influences heme catabolism in vivo in rats. Internat. J. Vit. Nutr. Res. 1999;69:1–6. doi: 10.1024/0300-9831.69.1.16. [DOI] [PubMed] [Google Scholar]
  • 25.Jain, D. (1989) Hepatic mitochondrial membrane chemistry and heme Metabolism in relation to multidentate macrocycles. M.Phil. Dissertation submitted to the University of Delhi.
  • 26.Turrens J.F., Freeman B.A., Levitt J.G., Crapo J.D. The effect of hyperoxia an superoxide production by lung submitochondrial particals. Arch. Biochem. Biophys. 1982;217:401–410. doi: 10.1016/0003-9861(82)90518-5. [DOI] [PubMed] [Google Scholar]
  • 27.Rashba S.J., Turro N.J., Cederbaum A.I. Increased NADPH and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Arch. biochem. Biophys. 1993;300(1):401–408. doi: 10.1006/abbi.1993.1054. [DOI] [PubMed] [Google Scholar]
  • 28.Fridovich J. Quantitative aspects of the production of superoxide anion radical by xanthine oxidase. J. Bio. Chem. 1970;245:4053–4057. [PubMed] [Google Scholar]
  • 29.Freeman B.A., Capro J.D.C. Biology of Diseases (Free Radical and Tissue injury) Lab. invest. 1982;47:412–426. [PubMed] [Google Scholar]
  • 30.Simonson S.G., Wetty E.K., Huarg J.Y., Crapo D.J., Taylor E.O., Kantrew P.S., Carrawary S.M. Aerosolized manganese SOD decreases hyperoxic pulmonary injury in primates. J. Appl. Physiol. 1997;83:550–558. doi: 10.1152/jappl.1997.83.2.550. [DOI] [PubMed] [Google Scholar]
  • 31.Patel M., Brian D.J. Metalloporphyrin class of therapeutic catalytic antioxidants. TIBS. 1999;30:358–64. doi: 10.1016/s0165-6147(99)01336-x. [DOI] [PubMed] [Google Scholar]
  • 32.Young S.W., Sidhu M.K., Quing F., Muller H.H., Neuder M., Zanassi G., Mody T.D., Hemr Mutch J.D. Preclinical evaluation of Gadolinium (III) texaphyrin complex. A new paramagnetic agent for magnetic resonance imaging. Invest. Radiol. 1994;29(3):330–338. doi: 10.1097/00004424-199403000-00013. [DOI] [PubMed] [Google Scholar]
  • 33.Wagner R.W, Lindsey J.S. Soluble synthetic multiporphyrin arrays. 2. Photodynamics of energy transfer process. J. Amr. Chem. Soc. 1996;118:11181–11193. doi: 10.1021/ja961612f. [DOI] [Google Scholar]
  • 34.Prathapan S., Jhonson T.E., Lindsey J.S. Building Block Synthesis of Porphyrin Light-Harvesting arrays. J. Amer. Chem. Soc. 1993;115:7519–7520. doi: 10.1021/ja00069a068. [DOI] [Google Scholar]
  • 35.Zheng K., Yu J., Aida K.T. A Photoresponsive Silicon Radical within a Porphyrin π cloud Photolysis of Organo and Nitroxy Silicon Porphyirn with visible light. J Amer. Chem. Soc. 1998;120:9838–9843. doi: 10.1021/ja980273i. [DOI] [Google Scholar]
  • 36.Wamsei C.C., Bard R.E., Senthilathipan V., Andeson V.C., Yates J.A., Lonsdale H.K., Rayfield L.W., Friesen O.T., Lorenz D.A.A., Stangle G.C., VanEikeien P., Baer O.R., Rawsdell R.A., Golbeik J.H., Babcork W.C., Sanberg J.J., Charke S.E. Synthesis and Photoactivity of Chemically Asymmetric polymeric Porphyrin film made by Interfacial Polymerization. J. Amer. Chem. Soc. 1989;111:8485–8491. doi: 10.1021/ja00204a023. [DOI] [Google Scholar]
  • 37.Bettleheim A., White B.A., Raybwk S.A., Murray R.W. Electrochemical polmerization of amino-, pyrrole-, and hydroxy substituted tetraphenyl porphyrins. In Org. Chem. 1987;26:1009–1017. [Google Scholar]
  • 38.Anderson H.L., Martin S.J., Bradley D.D.C. Synthesis and third—order non-linear optical properties of a Conjugated Porphyrin Polymers. Angew. Chem. Int., Ed. Engl. 1994;33:655–657. doi: 10.1002/anie.199406551. [DOI] [Google Scholar]
  • 39.Aoyoma Y., Asakama M., Matsni Y., Ogoshi H. Molecular Recognition of Quinones: Two point hydrogen Bonding strategy for the construction of Face to Face Porphyrin Quinone Architrctures. J. Amer. Chem. Soc. 1991;113:6233–6240. doi: 10.1021/ja00016a046. [DOI] [Google Scholar]
  • 40.Bhugan I., Lexa D., Saveant J.M. Homogenous Catalysis of Electrochemical hydrogen evolution by Iron (O) Porphyrin. J Amer. Chem. Soc. 1996;118:3982–3983. doi: 10.1021/ja954326x. [DOI] [Google Scholar]
  • 41.Wayland B.B., Shevy A.E. Push Effect on the Heterolytic O-O Bond cleavage of peroxoiron (III) Porphyrin Adducts. J. Amer. Chem. Soc. 1992;31:156–157. [Google Scholar]
  • 42.Sake M., Marlena F., Sisemote F., Valentine J.S. The Diverse Reactivity of Peroxy Ferric Porphyrin Complexes of Electron Rich and Electron Poor Porphyrin. J. Amer. Chem. Soc. 1996;118:2008–2012. doi: 10.1021/ja953694y. [DOI] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES