Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2000 Aug;15(Suppl 1):20–30. doi: 10.1007/BF02867541

Hyperhomocysteinemia and cardiovascular disease: The nutritional perspectives

Rajesh Pandey 1, Seema Gupta 1, Harbans Lal 1, H C Mehta 1, S K Aggarwal 1,
PMCID: PMC3454075  PMID: 23105265

Abstract

Several members of the vitamin B-complex family are known to participate in the normal metabolism of homocysteine (Hcy). Leaving aside the genetic determinants of hyperhomocysteinemia (HHC), the deficiencies of these vitamins can also result in HHC. The situation of sustained and long standing HHC is likely to be prevalent in population groups with low/average socio-economic status, geriatric population and alcohol abusers. If not corrected by supplementation, these population groups certainly are more vulnerable to develop atherosclerosis (AS) and subsequently, cardiovascular disease (CVD). Hyperhomocysteinemia per se and/or HHC-induced oxidative stress result(s) in chronic chemical endothelial injury/dysfunction, smooth muscle proliferation, prothrombotic state and oxidation of low density lipoproteins (LDL) leading to diverse cardiovascular complications. In the first decade of the new millennium, major research efforts would be directed towards understanding the basic mechanism of HHC-induced oxidative stress and the pathophysiology of HHC-induced CVD, culminating in the evolution of hitherto unknown therapeutic strategies such as nutriceuticals and oxidant-antidotes.

Key Words: Hyperhomocysteinemia, oxidative stress, atherosclerosis, cardiovascular disease

Full Text

The Full Text of this article is available as a PDF (742.2 KB).

References

  • 1.Basha B.J., Sowers J.R. Atherosclerosis: an update. Amer. Heart J. 1995;131:1192–1202. doi: 10.1016/S0002-8703(96)90096-4. [DOI] [PubMed] [Google Scholar]
  • 2.Robinson K., Loscalzo J. Other risk factors for coronary artery disease: homocysteine, lipoprotein (a), fibrinogen, and plasminogen activator inhibitor. In: Topol E.J., editor. Textbook of Cardiovascular Medicine. Philadelphia: Lippincott-Raven; 1998. pp. 231–247. [Google Scholar]
  • 3.Ross R., Glomset J.A. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180:1332–1339. doi: 10.1126/science.180.4093.1332. [DOI] [PubMed] [Google Scholar]
  • 4.McCully K.S., Wilson R.B. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975;22:215–227. doi: 10.1016/0021-9150(75)90004-0. [DOI] [PubMed] [Google Scholar]
  • 5.Genest J.J., McNamara J.R., Salem D.N., Wilson P.W.F., Schaefer E.J., Malinow M.R. Plasma homocyst(e)ine levels in men with premature coronary artery disease. J. Amer. Coll. Cardiol. 1990;16:1114–1119. doi: 10.1016/0735-1097(90)90542-W. [DOI] [PubMed] [Google Scholar]
  • 6.Taylor L.M., Defrang R.D., Harris E., Porter J.M. The association of elevated plasma homocyst(e)ine with progression of symptomatic peripheral arterial disease. J. Vasc. Surg. 1991;13:128–136. doi: 10.1067/mva.1991.24913. [DOI] [PubMed] [Google Scholar]
  • 7.Brattstrom L., Lindgren A., Israelsson B., Malinow M.R., Norrving B., Upson B., Hamfelt A. Hyperhomocysteinemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur. J. Clin. Invest. 1992;22:214–221. doi: 10.1111/j.1365-2362.1992.tb01829.x. [DOI] [PubMed] [Google Scholar]
  • 8.Heijer M., Blom H.J., Gerrits W.B.J., Rosendaal F.R., Haak H.L., Wijermans P.W., Bos G.M.J. Is hyperhomocysteinemia a risk factor for recurrent venous thrombosis? Lancet. 1995;345:882–885. doi: 10.1016/S0140-6736(95)90008-X. [DOI] [PubMed] [Google Scholar]
  • 9.Jacobsen D.W. Homocysteine and vitamins in cardiovascular disease. Clin. Chem. 1998;44:1833–1843. [PubMed] [Google Scholar]
  • 10.Mills J.L., McPartlin J.M., Kirke P.N., Lee Y.J., Conley M.R., Weir D.G., Scott J.M. Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet. 1995;345:149–151. doi: 10.1016/S0140-6736(95)90165-5. [DOI] [PubMed] [Google Scholar]
  • 11.Miller J.W. Homocysteine and Alzheimer's disease. Nutr. Rev. 1999;57:126–129. doi: 10.1111/j.1753-4887.1999.tb06936.x. [DOI] [PubMed] [Google Scholar]
  • 12.Jackson S.H. The reaction of homocysteine with aldehyde: an explanation of the collage defects in homocystinuria. Clin. Chim. Acta. 1973;45:215–217. doi: 10.1016/0009-8981(73)90429-4. [DOI] [PubMed] [Google Scholar]
  • 13.Williams K. Modulation and block of ion channels: a new biology of polyamines. Cell. Signal. 1997;9:1–13. doi: 10.1016/S0898-6568(96)00089-7. [DOI] [PubMed] [Google Scholar]
  • 14.Moolenar S.H., Poggi-Bach Jo., Engelke U.F.H., Corstiaensen J.M.B., Heerschap A., Jong J.G.N., Binzak B.A., Vockley J., Wevers R.A. Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clin. Chem. 1999;45:459–464. [PubMed] [Google Scholar]
  • 15.Selhub J., D'Angelo A. Relationship between homocysteine and thrombotic disease. Amer. J. Med. Sci. 1998;316:129–141. doi: 10.1097/00000441-199808000-00008. [DOI] [PubMed] [Google Scholar]
  • 16.Sethi K.K., Mantri R.R. Homocysteine-emerging evidence as an independent risk factor for coronary artery disease (editorial) Cardiol. Today. 1999;III:121–129. [Google Scholar]
  • 17.Christensen B., Refsum H., Vintermyr O., Ueland P.M. Homocysteine export from cells cultured in the presence of physiological or superfluous levels of methionine: methionine loading of nontransformed, transformed, proliferating, and quiescent cells in culture. J. Cell Biol. 1991;146:52–62. doi: 10.1002/jcp.1041460108. [DOI] [PubMed] [Google Scholar]
  • 18.Ueland P.M. Homocysteine species as components of plasma redox thiol status. Clin. Chem. 1995;41:340–342. [PubMed] [Google Scholar]
  • 19.Mansoor M.A., Svardal A.M., Schneede J., Ueland P.M. Dynamic relation between reduced, oxidized and protein-bound homocysteine and other thiol components in plasma during methionine loading in healthy men. Clin. Chem. 1992;38:1316–1321. [PubMed] [Google Scholar]
  • 20.Elsas L.J., Longo N., Rosenberg L.E. Inherited disorders of amino acid metabolism and storage. In: Fauci A.S., Braunwald E., Isselbacher K.J., Wilson J.D., Martin J.B., Kasper D.L., Hauser S.L., Longo D.L., editors. Harrison's Principles of Internal Medicine. 14th edn. New York: McGraw-Hill; 1998. pp. 2194–2203. [Google Scholar]
  • 21.Dudman N.P.B., Wilcken D.E.L., Wang J., Lynch J.F., Macey D., Lundberg P. Disordered methionine/homocysteine metabolism in premature vascular disease: its occurrence, cofactor therapy, and enzymology. Arterioscler. Thromb. 1993;13:1253–1260. doi: 10.1161/01.atv.13.9.1253. [DOI] [PubMed] [Google Scholar]
  • 22.Ubbink J.B., Vermaak W.J.H., Merwe A., Becker P.J. Vitamin B12, vitamin B6 and folate nutritional status in men with hyperhomocysteinemia. Amer. J. Clin. Nutr. 1993;57:47–53. doi: 10.1093/ajcn/57.1.47. [DOI] [PubMed] [Google Scholar]
  • 23.Hultberg B., Berglund M., Andersson A., Frank A. Elevated plasma homocysteine in alcoholics. Alcohol Clin. Exp. Res. 1993;17:687–689. doi: 10.1111/j.1530-0277.1993.tb00820.x. [DOI] [PubMed] [Google Scholar]
  • 24.Goyette P., Frosst P., Rosenblatt D.S., Rozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Amer. J. Hum. Genet. 1995;56:1052–1059. [PMC free article] [PubMed] [Google Scholar]
  • 25.Rozen R. Molecular genetic aspects of hyperhomocysteinemia and its relation to folic acid. Clin. Invest. Med. 1996;19:171–178. [PubMed] [Google Scholar]
  • 26.Scott J., Weir D. Homocysteine and cardiovascular disease (editorial) Quart. J. Med. 1996;89:561–563. doi: 10.1093/qjmed/89.8.561. [DOI] [PubMed] [Google Scholar]
  • 27.Harmon D.L., Woodside J.V., Yarnell J.W.G., McMaster D., Young I.S., McCrum E.E., Gey K.F., Whitehead A.S., Evans A.E. The common «thermolabile» variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinemia. Quart. J. Med. 1996;89:571–577. doi: 10.1093/qjmed/89.8.571. [DOI] [PubMed] [Google Scholar]
  • 28.Tsai M.Y., Bignell M., Schwichtenberg K., Hanson N.Q. High prevalence of a mutation in the cystathionine β-synthase gene. Amer. J. Hum. Genet. 1996;59:1262–1267. [PMC free article] [PubMed] [Google Scholar]
  • 29.Arnadottir M., Hultberg B., Vladov V., Nilsson-Ehle P., Thysell H. Hyperhomocysteinemia in cyclosporin-treated renal transplant recipients. Transplantation. 1996;61:509–512. doi: 10.1097/00007890-199602150-00034. [DOI] [PubMed] [Google Scholar]
  • 30.Chen L.H., Liu M.L., Hwang H.Y., Chen L.S., Korenberg J, Shane B. Human methionine synthase-cDNA cloning, gene localization and expression. J. Biol. Chem. 1997;272:3628–3634. doi: 10.1074/jbc.272.6.3628. [DOI] [PubMed] [Google Scholar]
  • 31.Miner S.E.S., Evrovski J., Cole D.E.C. Clinical chemistry and molecular biology of homocysteine metabolism: an update. clin. Biochem. 1997;30:189–201. doi: 10.1016/S0009-9120(96)00172-5. [DOI] [PubMed] [Google Scholar]
  • 32.Jacobsen D.W. Acquired hyperhomocysteinemia in heart transplant recipients (editorial) Clin. Chem. 1998;44:2238–2239. [PubMed] [Google Scholar]
  • 33.Willams R.H., Maggiore J.A. Hyperhomocysteinemia. Pathogenesis, clinical significance, laboratory assessment and treatment. Lab. Med. 1999;30:468–475. [Google Scholar]
  • 34.Guldenner C.V., Janssen J.F.M., Meer K., Donker A.J.M., Stehouwer C.D.A. Effect of folic acid and betaine on fasting and post methionine-loading plasma homocysteine and methionine levels in chronic hemodialysis patients. J. Int. Med. 1999;245:175–183. doi: 10.1046/j.1365-2796.1999.00430.x. [DOI] [PubMed] [Google Scholar]
  • 35.Naito M., Hayashi T., Iguchi A. New aproaches to the prevention of atherosclerosis. Drugs. 1995;50:440–453. doi: 10.2165/00003495-199550030-00003. [DOI] [PubMed] [Google Scholar]
  • 36.Witzhum J.L. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344:793–795. doi: 10.1016/S0140-6736(94)92346-9. [DOI] [PubMed] [Google Scholar]
  • 37.Lal H., Pandey R., Aggarwal S.K. Antioxidant vitamins and chemoprevention. Ind. J. Clin. Biochem. 1999;14:1–11. doi: 10.1007/BF02869145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Lal G., Yadav S.P.S., Aggarwal S.K., Bansal S., Chugh K., Lal H. Plasma vitamin E status in head and neck cancers. Ind. J. Clin. Biochem. 1996;11:46–48. [Google Scholar]
  • 39.Abrol P., Sharma N., Lal H. Vitamin E status in protein energy malnutrition. Ind. J. Clin. Biochem. 1997;12:125–127. doi: 10.1007/BF02873675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Welch G.N., Upchurch G.R., Loscalzo J. Homocysteine, oxidative stress, and vascular disease. Hosp. Pract. 1997;32:81–92. doi: 10.1080/21548331.1997.11443510. [DOI] [PubMed] [Google Scholar]
  • 41.Hogg N. The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radic. Biol. Med. 1999;27:28–33. doi: 10.1016/S0891-5849(99)00029-5. [DOI] [PubMed] [Google Scholar]
  • 42.Mateos F., Brock J.H., Perez-Arellano J.L. Iron metabolism in the lower respiratory tract. Thorax. 1998;53:594–600. doi: 10.1136/thx.53.7.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Fakhri M.E., Aggarwal S.K., Gayoum A., Sheriff D.S. Reduced plasma ascorbic acid and red cell glutathione contents in sickle cell disease-a preliminary report. Ind. J. Clin. Biochem. 1991;6:47–50. [Google Scholar]
  • 44.Halliwell B. Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutr. Rev. 1999;57:104–113. doi: 10.1111/j.1753-4887.1999.tb06933.x. [DOI] [PubMed] [Google Scholar]
  • 45.Lal H., Chugh K., Saini V., Kaur J., Saini A.S. Effect of ageing on some free radical scavangers and the metabolic consequence in rats. Ind. J. Clin. Biochem. 1992;7:143–146. [Google Scholar]
  • 46.Meidell R.S. Southwestern internal medicine conference: endothelial dysfunction and vascular disease. Amer. J. Med. Sci. 1994;307:378–389. doi: 10.1097/00000441-199405000-00013. [DOI] [PubMed] [Google Scholar]
  • 47.Valk-de Roo G.W., Stehouwer C.D.A., Lambert J., Schalkwijk C.G., Mooren M.J., Kluft C., Netelenbos C. Plasma homocysteine is weakly correlated with plasma endothelin and von Willebrand factor but not with endothelium-dependent vasodilation in healthy postmenopausal women. Clin. Chem. 1999;45:1200–1205. [PubMed] [Google Scholar]
  • 48.Drexler H., Hornig B. Endothelial dysfunction in human disease. J. Mol. Cell. Cardiol. 1999;31:51–60. doi: 10.1006/jmcc.1998.0843. [DOI] [PubMed] [Google Scholar]
  • 49.Welch G.N., Upchurch G.R., Loscalzo J. Hyperhomocyst(e)inemia and atherothrombosis. Ann. NY. Acad. Sci. 1997;811:48–58. doi: 10.1111/j.1749-6632.1997.tb51988.x. [DOI] [PubMed] [Google Scholar]
  • 50.Singh J., Garg K.N., Garg D., Lal H. Effect of adenosine and inosine on experimental myocardial infarction in rats. Ind. J. Exp. Biol. 1988;26:771–774. [PubMed] [Google Scholar]
  • 51.Singh J., Garg K.N., Garg D., Chugh K., Lal H. Effect of aspartate and glutamate on experimental myocardial infarction in rats. Ind. J. Exp. Biol. 1989;27:621–624. [PubMed] [Google Scholar]
  • 52.Natarajan V. Oxidants and signal transduction in vascular endothelium. J. Lab. Clin. Med. 1995;125:26–37. [PubMed] [Google Scholar]
  • 53.Trump B.F., Berezesky I.K. Calcium-mediated cell injury and cell death. FASEB J. 1995;9:219–228. doi: 10.1096/fasebj.9.2.7781924. [DOI] [PubMed] [Google Scholar]
  • 54.Cushing S.D., Fogelman A.M. Monocytes may amplify their recruitement into inflammatory lesions by inducing monocyte chemotactic protein. Arterioscler. Thromb. 1992;12:78–82. doi: 10.1161/01.atv.12.1.78. [DOI] [PubMed] [Google Scholar]
  • 55.Godfried S.L., Deckelbaum L.I. Natural antioxidants and restenosis after percutaneous transluminal coronary angioplasty (editorial) Amer. Heart J. 1995;129:203–210. doi: 10.1016/0002-8703(95)90063-2. [DOI] [PubMed] [Google Scholar]
  • 56.Gambhir D.S., Gambhir J.K. Oxidised low density lipoprotein, antioxidants and coronary atherosclerosis. Ind. Heart J. 1997;49:19–22. [PubMed] [Google Scholar]
  • 57.Heinecke J.W. Is lipid peroxidation relevant to atherogenesis? (commentary) J. Clin. Invest. 1999;104:135–136. doi: 10.1172/JCI7633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Sata M., Walsh K. Oxidized LDL activates Fas-mediated endothelial cell apoptosis. J. Clin. Invest. 1998;102:1682–1689. doi: 10.1172/JCI3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Wolf G. The role of oxidized low-density lipoprotein in the activation of peroxisome proliferatoractivated receptor γ implications for atherosclerosis. Nutr. Rev. 1999;57:88–91. doi: 10.1111/j.1753-4887.1999.tb06929.x. [DOI] [PubMed] [Google Scholar]
  • 60.Winder A.F. Homocysteine and cardiovascular disease (editorial) J. Clin. Pathol. 1998;51:713–713. doi: 10.1136/jcp.51.10.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Harpel P., Zhang X., Borth W. Homocysteine and hemostasis: pathogenetic mechanisms predisposing to thrombosis. J. Nutr. 1996;126(Suppl):1285S–1289S. doi: 10.1093/jn/126.suppl_4.1285S. [DOI] [PubMed] [Google Scholar]
  • 62.Guba S.C., Fink L.M., Fonesca V. Hyperhomocysteinemia and premature vascular occlusive disease. Amer. J. Med. Sci. 1998;315:279–285. doi: 10.1097/00000441-199804000-00011. [DOI] [PubMed] [Google Scholar]
  • 63.Price D.T., Loscalzo J. Cellular adhesion molecules and atherogenesis. Amer. J. Med. 1999;107:85–97. doi: 10.1016/S0002-9343(99)00153-9. [DOI] [PubMed] [Google Scholar]
  • 64.Mix J.A. Do megadoses of vitamin C compromise folic acid's role in the metabolism of plasma homocysteine? Nutr. Res. 1999;19:161–165. doi: 10.1016/S0271-5317(98)00180-8. [DOI] [Google Scholar]
  • 65.Still R.A., McDowell I.F.W. Clinical implications of plasma homocysteine measurement in cardiovascular disease. J. Clin. Pathol. 1998;51:183–188. doi: 10.1136/jcp.51.3.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Cooke J.P. Nutriceuticals for cardiovascular health. Amer. J. Cardiol. 1998;82(Suppl):43S–46S. doi: 10.1016/s0002-9149(98)00763-2. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES