Abstract
The dramatic advancements in the field of vaccinology has led to the formulation of chemically well defined vaccines composed of synthetic peptides and recombinant proteins derived from the immunologically dominant regions of the pathogens. Though these subunit vaccines are safer compared to the traditional vaccines they are known to be poorly immunogenic. This necessitates the use of adjuvants to enhance the immunogenicity of these vaccine formulations. The most common adjuvant for human use is alum. Research in the past has focused on the development of systemic immunity using conventional immunization protocols. In the present are, the emphasis is on the development and formulation of alternative adjuvants and delivery systems in generating systemic as well as mucosal immunity. This review mainly focuses on a variety of adjuvants (particulate as well as non-particulate) used with protective antigens of HIV, malaria, plague, leprosy using modified delivery vehicles. The experience of our laboratory and other researchers in this field clearly proves that these new age adjuvants and delivery systems undoubtedly generate enhanced immune response-both humoral and cell mediated. The choice of antigens, the nature of adjuvant used and the mode of delivery employed have a profound effect on the type of immune response generated. Besides the quantity, the quality of the antibodies generated also play a vital role in protection against these diseases. Some of the adjuvants and delivery systems used promoted high titre and affinity antibodies, which were shown to be cytophilic in nature, an important criteria in providing protection to the host. Thus the studies on these adjuvants/delivery systems with respect to various infectious diseases indicate their active role in efficient modulation of immune response along with safety and permissibility.
Key Words: vaccine, subunit, adjuvants, delivery systems
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
References
- 1.Ramon G. Sur ra toxine et sur l'anatoxine diptheriques. Ann. Inst. Pasteur. 1924;38:1–10. [Google Scholar]
- 2.Gupta R.K., Rost B.E., Rélyveld E., Siber G.R. Adjuvant properties of aluminium and calcium compounds. In: Powell M.F., Newman M.J., editors. Vaccine Design, The Sub-unit and Adjuvant Approach. New York: Plenum Press; 1995. pp. 229–248. [DOI] [PubMed] [Google Scholar]
- 3.Bathurst I.C., Gibson H.L., Kansopon J., Hahm B.K., Green K.M., Chang S.P., Hui G.S., Siddiqui W.A., Inselburg J., Millet P. An experimental vaccine cocktail for Plasmodium falciparum malaria. Vaccine. 1993;11(4):449–456. doi: 10.1016/0264-410X(93)90287-8. [DOI] [PubMed] [Google Scholar]
- 4.Ritu G., Rao D.N. Construction of synthetic immunogen: use of T & B cell epitopes of CS and RESA proteins of P.falciparum. Vaccine. 1992;10:761–766. doi: 10.1016/0264-410X(92)90511-H. [DOI] [PubMed] [Google Scholar]
- 5.Leary S. E. C., Williamson E. D., Griffin K. F., Russell P., Eley S. M., Titball R. W. Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Inf. Immun. 1995;63:2854–2858. doi: 10.1128/iai.63.8.2854-2858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gupta R. K., Relyveld E. H., Lindbald E. B., Bizzini B., Ben-Efrain S., Gupta C. K. Adjuvants a balance between toxicity and adjuvancity. Vaccine. 1993;1:293–306. doi: 10.1016/0264-410X(93)90190-9. [DOI] [PubMed] [Google Scholar]
- 7.Gorse G. J., Keefer M. C., Belshe R. B., Matthews T. J., Forrest B. D., Hsieh R. H., Koff W. C., Hanson C. V., Dolin R., Weinhold K. J., Frey S. E., Ketter N., Fast P. E. A dose-ranging study of a prototype synthetic HIV-1MN V3 branched peptide vaccine. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group. J. Infect. Dis. 1996;173(2):330–339. doi: 10.1093/infdis/173.2.330. [DOI] [PubMed] [Google Scholar]
- 8.Keitel W. A., Kester K. E., Atmar R. L., White A. C., Bond N. H., Holland C. A., Krzych U., Palmer D. R., Egan A., Diggs C., Ballou W. R., Hall B. F., Kaslow D. Phase I trial of two recombinant vaccines containing the 19kd carboxy terminal fragment of Plasmodium falciparum merozoite surface protein 1 (msp-1(19)) and T helper epitopes of tetanus toxoid. Vaccine. 1999;18(5–6):531–539. doi: 10.1016/S0264-410X(99)00221-2. [DOI] [PubMed] [Google Scholar]
- 9.Anderson G. W., Leary S. E. C., Williamson E. D., Titball R. W., Welkos S. L., Worsham P. L., Friedlander A. M. Recombinant V antigen protects mica against pneumonic and bubonic plague caused by F1-capsule positive and negative strains of Yersinia pestis. Infec. Immun. 1996;64:4580–4585. doi: 10.1128/iai.64.11.4580-4585.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Williamson E. D., Vesey P. M., Gillhespy K. J., Eley S. M., Green M., Titball R. W. An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model. Clin. Exp. Immunol. Apr. 1999;116(1):107–114. doi: 10.1046/j.1365-2249.1999.00859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Cooper I. D. The selective induction of different immune responses by vaccine adjuvants. In: Ada GC, editor. Strategies in Vaccine Design. Austin: RG Landers Company; 1994. pp. 125–158. [Google Scholar]
- 12.Allison A. C., Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974;252:252–255. doi: 10.1038/252252a0. [DOI] [PubMed] [Google Scholar]
- 13.Alving C. R. Liposomes as carriers of antigens and adjuvants. J. Immunol. Meths. 1991;140:1–13. doi: 10.1016/0022-1759(91)90120-5. [DOI] [PubMed] [Google Scholar]
- 14.Verma J. N., Wassef N. M., Wirtz R. A., Atkinson C. T., Aikawa M., Loomis L. D., Alving C. R. Phagocytosis of liposomes by macrophages: intracellular fate of liposomal malarial antigens. Biochemica Biophysica Acta. 1991;1066:229–238. doi: 10.1016/0005-2736(91)90191-A. [DOI] [PubMed] [Google Scholar]
- 15.Wassef N. M., Alving C. R. Complement dependent phagocytosis of liposomes by macrophages. Methods in Enzymology. 1987;149:124–134. doi: 10.1016/0076-6879(87)49050-2. [DOI] [PubMed] [Google Scholar]
- 16.Shek P., Lubovich S. The role of macrophages in promoting the antibody response mediated by liposome associate antigens. Immunol. Lett. 1982;5:305–309. doi: 10.1016/0165-2478(82)90118-3. [DOI] [PubMed] [Google Scholar]
- 17.Gregoriadis G. Immunological adjuvants: A role for liposomes. Immunol Today. 1990;11:89–97. doi: 10.1016/0167-5699(90)90034-7. [DOI] [PubMed] [Google Scholar]
- 18.Fries L. F., Gordon D. M., Richards R. L., Egan J. E., Hollingdale M. R., Marcos S., Silvemn C., Alving C. L. Liposomal malarial vaccines in humans: A safe and potent adjuvant strategy. Proc. Natl. Acad. Sci. USA. 1992;89:358–362. doi: 10.1073/pnas.89.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Garcon N. M. J., Six H. R. Universal vaccine carrier. Liposomes that provide T dependent help to weak antigens. J. Immunol. 1991;146:3697–3702. [PubMed] [Google Scholar]
- 20.Hui G. S. M., Tam L. Q., Chang S. P., Case S. E., Hashiro C., Siddiqui W. A., Shiba T., Kusumoto S., Kotani S. Synthetic low toxicity muramyl dipeptide and monophosphoryl lipid A replace FCA in inducing growth inhibitory antibodies to the Plasmodium falciparum major merozoite surface protein, gp 195. Infect. Immun. 1991;59:1585–1591. doi: 10.1128/iai.59.5.1585-1591.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Rooijen N. Bacterial Vaccines advances in Biotechnological processes. New York: Wley-Liss; 1990. Liposomes as carrier and immunoadjuvant of vaccine antigen; pp. 255–279. [PubMed] [Google Scholar]
- 22.Phillips W. C., Emili A. Enhanced antibody response to liposome associated protein antigens: preferential stimulation of IgG2a/b production. Vaccine. 1992;10:151–158. doi: 10.1016/0264-410X(92)90004-4. [DOI] [PubMed] [Google Scholar]
- 23.Gawrisch K., Han K. H., Yang J. S., Bergelson L. D., Ferretti J. A. Interaction of peptide fragment (828–848) of the envelope glycoproteins of human immunodeficiency virus type I with lipid bilayer. Biochemistry. Mar 30. 1993;32(12):3112–3118. doi: 10.1021/bi00063a024. [DOI] [PubMed] [Google Scholar]
- 24.White K., Krzych U., Gordon D. M., Porter T. G., Richards R. L. Induction of cytolytic and antibody response using plasmodium falciparum repeatless circumsporozoite protein encapsulated in liposomes. Vaccine. 1993;11:1341–1346. doi: 10.1016/0264-410X(93)90105-7. [DOI] [PubMed] [Google Scholar]
- 25.Sabhnani L., Rao D. N. Identification of immunodominant epitope of F1 antigen ofYersinia pestis. FEMS Immunol. Med. Microbiol. 2000;27:155–162. doi: 10.1111/j.1574-695X.2000.tb01426.x. [DOI] [PubMed] [Google Scholar]
- 26.Medda S., Das N., Mahato S. B., Mahadevan P. R., Basu M. K. Glycoside-bearing liposomal delivery systems against macrophage-associated disorders involving Mycobacterium leprae and Mycobacterium tuberculosis. Indian J Biochem Biophys. Jun. 1995;32(3):147–151. [PubMed] [Google Scholar]
- 27.Sengupta U., Sinha S., Ramu G., Lavania R. K., Gupta C. M. Soluble antigen of M. leprae coupled with liposomes elicits both “early” and “late” delayed hypersensitivity skin reactions. Int. J. Lepr other Mycobact. Dis. Mar. 1988;56(1):45–49. [PubMed] [Google Scholar]
- 28.Gupta R. K., Varanelli C. L., Griffin P., Wallach D. F., Siber G. R. Adjuvant properties of non-phospholipid liposomes (Novasomes) in experimental animals for human vaccine antigens. Vaccine. Feb. 1996;14(3):219–225. doi: 10.1016/0264-410X(95)00182-Z. [DOI] [PubMed] [Google Scholar]
- 29.Poltl-Frank F., Zurbriggen R., Helg A., Stuart F., Robinson J., Gluck R., Pluschke G. Use of reconstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide-based. Clin Exp Immunol. Sep. 1999;17(3):496–503. doi: 10.1046/j.1365-2249.1999.00989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Cohen S., Bano M. C., Chow M., Langer R. Lipid-alginate interactions render changes in phospholipid bilayer permeability. Biochim Biophys Acta. Mar 18. 1991;1063(1):95–102. doi: 10.1016/0005-2736(91)90358-F. [DOI] [PubMed] [Google Scholar]
- 31.Alonso M. J., Gupta R. K., Min C., Siber G. R., Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 1994;12:299–306. doi: 10.1016/0264-410X(94)90092-2. [DOI] [PubMed] [Google Scholar]
- 32.Eldridge J. H., Staas J. K., Meulbroek J. A., Tice T. R., Gilley R. M. Biodegradable and Biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun. Sep. 1991;59(9):2978–2986. doi: 10.1128/iai.59.9.2978-2986.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Cleland J. L., Powell M. F., Lim A., Barron L., Berman P. W., Eastman D. J., Nunberg J. H., Wrin T., Vennari J. C. Development of a single-shot subunit vaccine for HIV-1. AIDS Res Hum Retroviruses. 1994;10(Suppl 2):21–26. [PubMed] [Google Scholar]
- 34.Morein B., Fossum C., Lovgren K., Hoglund S. The ISCOM a modern approach to vaccines. Seminars in Virology. 1990;1:49–49. [Google Scholar]
- 35.Takahashi H., Takeshita T., Morein B., Putney S., Germain R. N., Berzofsky J. A. Induction of CD8+cytotoxic T-cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature. 1990;344:873–875. doi: 10.1038/344873a0. [DOI] [PubMed] [Google Scholar]
- 36.Pyle S. W., Morein B., Bess J. W., Akerblom L., Nara P. L., Nigida S. M., Lerche N. W., Robey W. G., Fischinger P. J., Arthur L. O. Immune response to immunostimulatory complexes (ISCOMs) prepared from human envelope glycoprotein (gp120) Vaccine. Oct. 1989;7(5):465–473. doi: 10.1016/0264-410X(89)90164-3. [DOI] [PubMed] [Google Scholar]
- 37.Ahulwalia A., Gokulan K., Nath I., Rao D. N. Modification of delivery system enhances MHC non restricted immunogenicity of V3 loop region of HIV-1 gp120. Microbiol. Immunol. 1997;41:779–784. doi: 10.1111/j.1348-0421.1997.tb01926.x. [DOI] [PubMed] [Google Scholar]
- 38.Kerstein F. A. Incorporation of the major outer membrane protein (PI) of Nesseria gonorhoeae into saponin-lipid complexes (Iscoms): Chemical analysis, some structural features and comparison of their immunogenicity with three other antigen delivery systems. Infect. Immun. 1988;56:432–438. doi: 10.1128/iai.56.2.432-438.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Sjolander A., Lovgren Stahl S., Aslund L., Hansoon M., Nygren P. High antibody responses in rabbits immunized with influenza virus ISCOMs containing a repeated sequence of the plasmodium falciparum antigen Pf 155/RESA. Vaccine. 1991;9:443–450. doi: 10.1016/0264-410X(91)90133-Q. [DOI] [PubMed] [Google Scholar]
- 40.Chopra, N., Thomas, B. E., Sabhnani, L. and Rao, D. N. (2000) Inducing protective antibodies against RESA peptide using modified delivery systems “ISCOMs”. Med. Microbiol. Immunol. (In press). [DOI] [PubMed]
- 41.Preis I., Langer R. S. A single-step immunization by sustained antigen release. J Immunol. Meth. 1979;28(1–2):193–197. doi: 10.1016/0022-1759(79)90341-7. [DOI] [PubMed] [Google Scholar]
- 42.Eldridge J. H., Gilley R. M., Staas J. K., Moldoveanu Z., Meulbroek J. A., Tice T. R. Biodegradable microspheres: vaccine delivery system for oral immunization. Curr. Top. Microbiol. Immunol. 1989;146:59–66. doi: 10.1007/978-3-642-74529-4_6. [DOI] [PubMed] [Google Scholar]
- 43.Santiago N., Milstein S., Rivera T., Garcia E., Zaidi T., Hong H., Bucher D. Oral immunization of rats with proteinoid microspheres encapsulating influenza virus antigens. Pharm Res. Aug. 1993;10(8):1243–1247. doi: 10.1023/A:1018992924025. [DOI] [PubMed] [Google Scholar]
- 44.Ellouz F., Adam A., Ciorbaru R., Lederer A. Minimal structural requirement for adjuvant activity of bacterial peptidoglycan derivatives. Biochemistry Biophysics Research Communications. 1974;59:1317–1325. doi: 10.1016/0006-291X(74)90458-6. [DOI] [PubMed] [Google Scholar]
- 45.Leclerc C., Vogel F. Synthetic immunomodulators and synthetic vaccines. CRC Critical Reviews in Therapeutics and Drug Carrier Systems. 1986;2:353–358. [PubMed] [Google Scholar]
- 46.Tanaka A., Nagao S., Kotani S., Shiba T., Kusumoto S. Stimulation of the reticuloendothelial system of mice by muramyl dipeptide. Infect. Immun. 1979;24:302–307. doi: 10.1128/iai.24.2.302-307.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Nagao S., Tanaka A., Yamamoto Y., Koga T., Onoue K., Shiba T. Inhibition of macrophage migration by muramyl peptides. Infect. Immun. 1979;24:308–312. doi: 10.1128/iai.24.2.308-312.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Leclerc C, Vogel FR. Synthetic immunomodulators and synthetic vaccines. Crit. Rev. Ther. Drug Carrier Syst. 1986;2(4):353–406. [PubMed] [Google Scholar]
- 49.Iribe H., Koga T. Augmentation of the proliferative responses of thymocytes to phytohemagglutinin by muramyl dipeptide. Cell Immunol. 1984;88:9–12. doi: 10.1016/0008-8749(84)90047-9. [DOI] [PubMed] [Google Scholar]
- 50.Sugimoto M., Germain R. N., Chedid L., Benacerraf B. Enhancement of carrier specific helper T-cell function by the synthetic adjuvant N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) J. Immunol. 1978;120:980–988. [PubMed] [Google Scholar]
- 51.Byars N. E., Allison A. C. Adjuvant formulation for use in vaccine to elicit both cell mediated and humoral immunity. Vaccine. 1987;5:223–227. doi: 10.1016/0264-410X(87)90105-8. [DOI] [PubMed] [Google Scholar]
- 52.Parant M., Riveau G., Parant F., Chedid L. Inhibition of endogenous pyrogen-induced fever by a muramyl dipeptide derivative. American Journal of Physiology. 1984;247:169–173. doi: 10.1152/ajpcell.1984.247.3.C169. [DOI] [PubMed] [Google Scholar]
- 53.Chedid L. A., Parant M. A., Audibert F. M., Riveau G. J., Parant F. J., Lederer E., Choay J. P., Lefrancier P. L. Biological activities of a new synthetic muramyl peptide adjuvant devoid of pyrogenicity. Infect. Immun. 1982;35:417–424. doi: 10.1128/iai.35.2.417-424.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Krivorutchenko Y. L., Andronovskaja I. B., Hinkula J., Krivoshein Y. S., Ljungdahl-Stahle E., Pertel S. S., Grishkovets V. I., Zemlyakov A. E., Wahren B. Study of the adjuvant activity of new MDP derivatives and purified saponins and their influence on HIV-1 replication in vitro. Vaccine. Aug–Sep. 1997;15(12–13):1479–1486. doi: 10.1016/S0264-410X(97)00065-0. [DOI] [PubMed] [Google Scholar]
- 55.Chaba B., Kumar P., Haq W., Sabhnani L., Rao D. N. Influence of Immunoadjuvants and a promiscous T cell determinants on the Immunigenicity of RESA peptide antigen of Pfalciparum. Int. J. Immunopharmac. 1998;20:259–273. doi: 10.1016/S0192-0561(98)00021-6. [DOI] [PubMed] [Google Scholar]
- 56.Bessler W. G., Kleine B., Biesert L., Schlecht S. D., Wiesmuller H., Metzger J., Jung G. Bacterial surface components as immunomodulators. In: Mashi KN, Lange W, editors. Immunotherapeutic Prospects of Infectious diseases. Berlin, Heidelberg: Springer Verlag; 1990. pp. 37–48. [Google Scholar]
- 57.Weismuller K. H., Jung G., Heiss G. Novel low molecular weight synthetic vaccines against foot and mouth diseases containing a potent B cell and macrophage activator. Vaccine. 1989;7:29–31. doi: 10.1016/0264-410X(89)90007-8. [DOI] [PubMed] [Google Scholar]
- 58.Werner G. H., Floc'h F., Migliore-Samour D., Jolles P. Immunomodulating peptides. Experimentia. 1986;42:521–531. doi: 10.1007/BF01946691. [DOI] [PubMed] [Google Scholar]
- 59.Hunter R. L., Olsen M., Buynitzsky S. Adjuvant activity of non-ionic block co-polymers IV. Effect of molecular weight and formulation on titre and isotype of antibody. Vaccine. 1991;9:257–265. doi: 10.1016/0264-410X(91)90108-I. [DOI] [PubMed] [Google Scholar]
- 60.Millet P., Kalish M. L., Collins W. E., Hunter R. L. Effect of adjuvant formulations on the selection of B-cell epitopes expressed by a malaria peptide vaccine. Vaccine. 1992;10:547–550. doi: 10.1016/0264-410X(92)90355-N. [DOI] [PubMed] [Google Scholar]
- 61.Trinchieri, G. (1993) Interleukin-12 and it's role in the generation of van Nest GA, Steiner KS, haigwood NL, Burke RL and Ott. G. In Vaccines. Ed Bronwn F, Cold Spring Harbor laboratory, p 57–62
- 62.Thomas B., Prasad A., Gokulan K., Rao D. N. Bioactive fragment of human IL-1B (163–171) modulates the immune response to synthetic peptides of RESA of P. falciparum. Med. Microbiol. Immunol. 1999;187:165–171. doi: 10.1007/s004300050089. [DOI] [PubMed] [Google Scholar]
- 63.Gokulan K., Rao D. N. Bioactive fragment of human IL-1 B [163–171] modulates the immune response to synthetic peptides of HIV. Microbiol. Immunol. 1997;41:965–974. doi: 10.1111/j.1348-0421.1997.tb01956.x. [DOI] [PubMed] [Google Scholar]
- 64.Libraty D. H., Airan L. E., Uyemura K., Jullien D., Spellberg B., Rea T. H., Modlin R. L. Interferon-gamma differentially regulates interleukin-12 and interleukin-10 production in leprosy. J. Clin Invest. Jan, 15. 1997;99(2):336–341. doi: 10.1172/JCI119162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Murray P. J., Aldovini A., Young R. A. Manipulation and potentiation of antimycobacterial immunity using recombinant Bacille-Calmette-Guerin strains that secrete cytokines. Proc. Natl. Acad. Sci. U S A. Jan, 23. 1996;93(2):934–939. doi: 10.1073/pnas.93.2.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Kumar P., Ivanov B. B., Kabilan L., Rao D. N. Construction of a synthetic immunogen: use of the natural immunomodulator polytuftsin in malaria vaccines against RESA antigen ofPlasmodium falciparum. Vaccine. 1994;12:819–824. doi: 10.1016/0264-410X(94)90203-8. [DOI] [PubMed] [Google Scholar]
- 67.Kumar P., Rao D. N. Correlation of T cell response and lymphokine profile with RESA peptides containing a universal T-cell epitope and an immunopotentiator, polytuftsin. Microbiol. Immunol. 1999;43(6):561–566. doi: 10.1111/j.1348-0421.1999.tb02442.x. [DOI] [PubMed] [Google Scholar]
- 68.Dhawan P. I., Nath, Rao D. N. Polytuftsin: its possible effects and mechanism during macrophage activation. Immunol. Lett. 1995;46:177–182. doi: 10.1016/0165-2478(95)00044-6. [DOI] [PubMed] [Google Scholar]
- 69.Kumar P., Biswas S., Rao D. N. Potentiation of the Immune response against RESA peptides of Plasmodium falciparum by incorporating a universal T cell epitope (CS. T3) and an immunopotentiator, (Polytuftsin) and delivery through liposomes. Microbiol. Immunol. 1999;43(6):561–566. doi: 10.1111/j.1348-0421.1999.tb02443.x. [DOI] [PubMed] [Google Scholar]
- 70.Gokulan K., Khare S., Rao D. N. Increase in the immunogenicity of HIV peptide antigens by chemical linkage of polytuftsin (TKPR)40 into their sequence. DNA and Cell Biol. 1999;18(8):623–626. doi: 10.1089/104454999315033. [DOI] [PubMed] [Google Scholar]
- 71.Kensil C. R., Patel U., Lennick M., Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol. Jan 15. 1991;146(2):431–437. [PubMed] [Google Scholar]
- 72.Kitamura K., Livingston P. O., Fortunato S. R., Stockert E., Helling F., Ritter G., Oettgen H. F., Old L. J. Serological response patterns of melanoma patients immunized with a GM2 ganglioside conjugate vaccine. Proc. Natl. Acad. Sci. U S A. Mar 28. 1995;92(7):2805–2809. doi: 10.1073/pnas.92.7.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Coughlin R. T., Fish D., Mather T. N., Ma J., Pavia C., Bulger P. Protection of dogs from Lyme disease with a vaccine containing outer surface protein (Osp) A, OspB, and the saponin adjuvant QS21. J Infect. Dis. Apr 17. 1995;1(4):1049–1052. doi: 10.1093/infdis/171.4.1049. [DOI] [PubMed] [Google Scholar]
- 74.Wu J. Y., Gardner B. H., Murphy C. I., Seals J. R., Kensil C. R., Recchia J., Beltz G. A., Newman G. W., Newman M. J. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol. Mar 1. 1992;148(5):1519–1525. [PubMed] [Google Scholar]
- 75.Stoute J. A., Slaoui M., Heppner D. G., Momin P., Kester K. E., Desmons P., Wellde B. T., Garcon N., Krzych U., Marchand M. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS, S Malaria Vaccine Evaluation Group, N Engl. J. Med. Jan 9. 1997;336(2):86–91. doi: 10.1056/NEJM199701093360202. [DOI] [PubMed] [Google Scholar]
- 76.Moore A., McCarthy L., Mills K. H. The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1. Vaccine. Jun 4. 1999;17(20–21):2517–2527. doi: 10.1016/S0264-410X(99)00062-6. [DOI] [PubMed] [Google Scholar]
- 77.Pye D., Vandenberg K. L., Dyer S. L., Irving D. O., Goss N. H., Woodrow G. C., Saul A., Alving C. R., Richards R. L., Ballou W. R., Wu M. J., Skoff K., Anders R. F. Selection of an adjuvant for vaccination with the malaria antigen, MSA-2. Vaccine. Jun. 1997;15(9):1017–1023. doi: 10.1016/S0264-410X(96)00289-7. [DOI] [PubMed] [Google Scholar]
- 78.Collins W. E., Skinner J. C., Filipski V. K., Broderson J. R., Stanfill P. S., Morris C. L. Transmission of Plasmodium fragile to Saimiri monkeys. J. Parasitol. Oct. 1990;76(5):730–732. doi: 10.2307/3282990. [DOI] [PubMed] [Google Scholar]
- 79.O'Hagan D. T., Ugozzoli M., Barackman J., Singh M., Kazzaz J., Higgins K., Vancott T. C., Ott G. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine. Mar 6. 2000;18(17):1793–1801. doi: 10.1016/S0264-410X(99)00522-8. [DOI] [PubMed] [Google Scholar]
- 80.Tindle R. W., Croft S., Herd K., Malcolm K., Geczy A. F., Stewart T., Fernando G. J. A vaccine conjugate of ‘ISCAR’ immunocarrier and peptide epitopes of the E7 cervical cancer-associated protein of human papillomavirus type 16 elicits specific Th1-and Th2-type responses in immunized mice in the absence of oil-based adjuvants. Clin. Exp. Immunol. 1995;101(2):265–271. doi: 10.1111/j.1365-2249.1995.tb08349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Gregory J., Jones Russel, John S. Sullivan, Andrew F. Geczy. Peptide Sequences with strong stimulatory activity for lymphoid cells: implications for vaccine development. Vaccine. 1993;11(13):1310–1315. doi: 10.1016/0264-410X(93)90100-C. [DOI] [PubMed] [Google Scholar]
- 82.McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J. H., Hirasawa M., Kiyono H. The mucosal immune system. From Fundamentals concepts to vaccine development. Vaccine. 1992;10:75–88. doi: 10.1016/0264-410X(92)90021-B. [DOI] [PubMed] [Google Scholar]
- 83.Mestecky J. The common mucosal immune system and current strategies for induction of immune response in external secretions. J. Clin. Immunol. 1987;7:265–276. doi: 10.1007/BF00915547. [DOI] [PubMed] [Google Scholar]
- 84.Nishino Y., Kameoka M., Okada Y., Zhong Q., Kimura T., Azuma I., Ikuta K. In vivo induction of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes and delayed-type hypersensitivity by a 23-amino acid peptide from the highly conserved region in major core protein p24. Vaccine. May. 1994;12(6):485–491. doi: 10.1016/0264-410X(94)90304-2. [DOI] [PubMed] [Google Scholar]
- 85.Staats F., Herman Nichols Garrett W., Inomas J. Pather. Mucosal Immunity to HIV-1. The Journal of Immunity. 1996;157:462–472. [PubMed] [Google Scholar]
- 86.Jefferey L., Lim Clelav Amy, Barron Lorena, Michael F. Paveli. Development of a single shot subunit vaccine for HIV-1: Part 4. Optimizing Microencapsulation and pulsatile release of MN rgp 120 from biodegradable microsphere. J. Cont. Rel. 1997;47:135–150. doi: 10.1016/S0168-3659(96)01625-2. [DOI] [Google Scholar]
- 87.Eldridge J. H., Hammond C. J., Meulbroek J. A., Staas J. K., Gilley R. M., Tice T. R. Controlled vaccine release in the gut-associated lymphoid tissues. 1. Orally administered biodegradable microspheres target the Peyer's patches. J. Cont. Rel. 1990;11:205–214. doi: 10.1016/0168-3659(90)90133-E. [DOI] [Google Scholar]
- 88.Michalek S. M., Childers N. K., Katz J., Denys F. R., Berry A. K., Eldridge J. H., McGhee J. R., Curtiss R. Liposomes as oral adjuvants. Curr Top Microbiol Immunol. 1989;146:51–58. doi: 10.1007/978-3-642-74529-4_5. [DOI] [PubMed] [Google Scholar]
- 89.Mosein B., Villacres-Eriksoon M., Lovgsen-Benytsson K. Iscom, a delivery system for parenteral and mucosal vaccine antigen. Dev. Biol. Stand. Basel, Kosfer. 1998;92:33–39. [PubMed] [Google Scholar]
- 90.Eyles J. E., Sharp G. J., Williamson E. D., Spiers I. D., Alpar H. O. Intra-nasal administration of poly-lactic acid microsphere co-encapsulatedYersinia pestis subunits confers protection from pneumonic plague in the mouse. Vaccine. Apr. 1998;16(7):698–707. doi: 10.1016/S0264-410X(97)00249-1. [DOI] [PubMed] [Google Scholar]
- 91.Imaoka K., Miller C.J., Kubota M., McChesney M.B., Lohman B., Yamamoto M., Fujihashi K., Someya K., Honda M., McGhee J.R., Kiyono H. Nasal immunization of non-human primates with simian immunodeficiency virus p55gag and cholera toxin adjuvant induces Th1/Th2 help for virus-specific immune responses in reproductive tissues. J. Immunol. Dec 1. 1998;161(11):5952–5958. [PubMed] [Google Scholar]
- 92.Chiaramonte M.G., Hesse M., Cheever A.W., Wynn T.A. CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J. Immunol, Jan 15. 2000;164(2):973–985. doi: 10.4049/jimmunol.164.2.973. [DOI] [PubMed] [Google Scholar]
- 93.Tidd D.M., Spiller D.G., Broughton C.M., Norbury L.C., Clark R.E., Giles R.V. Oligodeoxynucleotide 5mers containing a 5′-CpG induce apoptosis through a mitochondrial mechanism in T lymphocytic leukaemia cells. Nucleic Acids Res. Jun 1. 2000;28(11):2242–2250. doi: 10.1093/nar/28.11.2242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Morris C.B., Cheng E., Thanawastien A., Cardenas-Freytag L., Clements J.D. Effectiveness of intranasal immunization with HIV-gp160 and an HIV-1 env CTL epitope peptide (E7) in combination with the mucosal adjuvant LT(R192G) Vaccine. Mar 17. 2000;18(18):1944–1951. doi: 10.1016/S0264-410X(99)00447-8. [DOI] [PubMed] [Google Scholar]
- 95.Jepson M.A., Mason C.M., Clark M.A., Simmons N.L., Hirst B.H. Variations in lectin binding properties of intestinal M cells. J Drug Target. 1995;3(1):75–77. doi: 10.3109/10611869509015938. [DOI] [PubMed] [Google Scholar]
- 96.Weltzin R., Lucia-Jandris P., Michetti P., Fields B.N., Kraehenbuhl J.P., Neutra M.R. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol. May. 1989;108(5):1673–1685. doi: 10.1083/jcb.108.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Fogerite G., Edghill-Smith Y., Kheiri M., Wang Z., Das K., Feketova C., Canki M., Mannino R.J. Lipid matrix-based subunit vaccines: a structure-function approach to oral and parenteral immunization. AIDS Res. Hum. Retro. 1994;10:S99–S103. [PubMed] [Google Scholar]