Skip to main content
Journal of Maxillofacial & Oral Surgery logoLink to Journal of Maxillofacial & Oral Surgery
. 2010 Apr 24;8(4):334–339. doi: 10.1007/s12663-009-0081-0

3D finite element analysis to detect stress distribution: spiral family implants

Matteo Danza 1, Ilaria Zollino 2, Luigi Paracchini 3, Guidi Riccardo 2, Stefano Fanali 1, Francesco Carinci 2,4,
PMCID: PMC3454091  PMID: 23139539

Abstract

Aim

Spiral family implants are a root-form fixtures with increasing thickness of tread. This characteristic gives a self-tapping and self-condensing bone properties to implants. To study spiral family implant inserted in different bone quality and connected with abutments of different angulations a Finite Element Analysis (FEA) was performed. Once drawn the systems that were object of the study by CAD (Computer Aided Design), the FEA discretized solids composing the system in many infinitesimal little elementary solids defined finite elements. This lead to a mesh formation where the single finite elements were connected among them by nodes. For the 3 units bone-implant-abutments several thousand of tetrahedral elements having 10 parabolic nodes were employed.

Materials and methods

The biomechanical behaviour of 4.2 mm × 13 mm dental implants, connecting screw, straight and 15° and 25° angulated abutment subjected to static loads, in contact with high and poor bone quality was evaluated by FEA. A double system was analyzed: a) FY strength acting along Y axis and having 200 N intensity; b) FY and FZ couple of strengths applied along Y and Z directions and having respectively 200N and 140N intensity. The materials were considered as homogeneous, linear and isotropic. Then the FEA simulation was performed hypothesizing a linearity between loads and deformations.

Results

The lowest stress value was found in the system composed by implants and straight abutments loaded with a vertical strength, while the highest stress value were found in implants and 15° angulated abutment loaded with a angulated strength. In addition, the lower is the bone quality (i.e. D4) the higher is the distribution of the stress within the bone.

Conclusion

Spiral family implants can be used successfully in low bone quality but a straight force is recommended.

Keywords: Biomechanics, Finite element analysis, Spiral, Implant, Stress, Distribution

Full Text

The Full Text of this article is available as a PDF (234.5 KB).

References

  • 1.Geng J.P., Tan K.B., Liu G.R. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85(6):585–598. doi: 10.1067/mpr.2001.115251. [DOI] [PubMed] [Google Scholar]
  • 2.Chun H.J., Cheong S.Y., Han J.H., Heo S.J., Chung J.P., Rhyu I.C., Choi Y.C., Baik H.K., Ku Y., Kim M.H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil. 2002;29(6):565–574. doi: 10.1046/j.1365-2842.2002.00891.x. [DOI] [PubMed] [Google Scholar]
  • 3.Hansson S. A conical implant-abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone. An axisymmetric finite element analysis. Clin Oral Implants Res. 2003;14(3):286–293. doi: 10.1034/j.1600-0501.2003.140306.x. [DOI] [PubMed] [Google Scholar]
  • 4.Watanabe F., Hata Y., Komatsu S., Ramos T.C., Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology. 2003;91(1):31–36. doi: 10.1007/s10266-003-0029-7. [DOI] [PubMed] [Google Scholar]
  • 5.Akça K., Cehreli M.C., Iplikçioðlu H. Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morsetaper implant. A nonlinear finite element stress analysis. Clin Oral Implants Res. 2003;14(4):444–454. doi: 10.1034/j.1600-0501.2003.00828.x. [DOI] [PubMed] [Google Scholar]
  • 6.Natali A.N., Pavan P.G., Ruggero A.L. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res. 2006;17(1):67–74. doi: 10.1111/j.1600-0501.2005.01162.x. [DOI] [PubMed] [Google Scholar]
  • 7.Akagawa Y., Sato Y., Teixeira E.R., Shindoi N., Wadamoto M. A mimic osseointegrated implant model for three-dimensional finite element analysis. J Oral Rehabil. 2003;30(1):41–45. doi: 10.1046/j.1365-2842.2003.01002.x. [DOI] [PubMed] [Google Scholar]
  • 8.Iplikcioglu H., Akca K., Cehreli M.C., Sahin S. Comparison of nonlinear finite element stress analysis with in vitro strain gauge measurements on a Morse taper implant. Int J Oral Maxillofac Implants. 2003;18(2):258–265. [PubMed] [Google Scholar]
  • 9.Cruz M., Wassall T., Toledo E.M., Barra L.P., Lemonge A.C. Threedimensional finite element stress analysis of a cuneiform-geometry implant. Int J Oral Maxillofac Implants. 2003;18(5):675–684. [PubMed] [Google Scholar]
  • 10.Geng J.P., Xu D.W., Tan K.B., Liu G.R. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30(4):223–233. doi: 10.1563/0654.1. [DOI] [PubMed] [Google Scholar]
  • 11.Koca O.L., Eskitascioglu G., Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005;93(1):38–44. doi: 10.1016/j.prosdent.2004.10.001. [DOI] [PubMed] [Google Scholar]
  • 12.Satoh T., Maeda Y., Komiyama Y. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants. 2005;20(4):533–539. [PubMed] [Google Scholar]
  • 13.Heckmann S.M., Karl M., Wichmann M.G., Winter W., Graef F., Taylor T.D. Loading of bone surrounding implants through three-unit fixed partial denture fixation: a finite-element analysis based on in vitro and in vivo strain measurements. Clin Oral Implants Res. 2006;17(3):345–350. doi: 10.1111/j.1600-0501.2005.01177.x. [DOI] [PubMed] [Google Scholar]
  • 14.Kwon B.G., Kim S.G. Finite Element Analysis of Different Bone Substitutes in the Bone Defects Around Dental Implants. Implant Dent. 2006;15(3):254–264. doi: 10.1097/01.id.0000219864.33618.8b. [DOI] [PubMed] [Google Scholar]
  • 15.Sevimay M., Turhan F., Kilicarslan M.A., Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93(3):227–234. doi: 10.1016/j.prosdent.2004.12.019. [DOI] [PubMed] [Google Scholar]
  • 16.Zarb G.A., Schmitt A. Implant prosthodontic treatment options for the edentulous patient. J Oral Rehabil. 1995;22(8):661–671. doi: 10.1111/j.1365-2842.1995.tb01064.x. [DOI] [PubMed] [Google Scholar]
  • 17.Misch C.E. Density of bone: effect on treatment plans, surgical approach, healing, and progressive bone loading. Int J Oral Implantol. 1990;6(2):23–31. [PubMed] [Google Scholar]
  • 18.Misch C.E. Contemporary implant dentistry. 2nd ed. St. Louis: Mosby; 1998. pp. 109–134. [Google Scholar]
  • 19.Schroeder A. Oral implantology: basic, ITI hollow cylinder system. New York: Thieme Medical Publishers; 1996. pp. 60–65. [Google Scholar]
  • 20.Williams K.R., Watson C.J., Murphy W.M., Scott J., Gregory M., Sinobad D. Finite element analysis of fixed prostheses attached to osseointegrated implants. Quintessence Int. 1990;21(7):563–570. [PubMed] [Google Scholar]
  • 21.Clift S.E., Fisher J., Watson C.J. Finite element stress and strain analysis of the bone surrounding a dental implant: effect of variations in bone modulus. Proc Inst Mech Eng H. 1992;206(4):233–241. doi: 10.1243/PIME_PROC_1992_206_295_02. [DOI] [PubMed] [Google Scholar]
  • 22.Cochran D.L. The scientific basis for and clinical experiences with Straumann implants including the ITI dental implant system: a consensus report. Clin Oral Implants Res. 2000;11:33–58. doi: 10.1034/j.1600-0501.2000.011S1033.x. [DOI] [PubMed] [Google Scholar]
  • 23.Lekholm U., Zarb G.A. Tissue-integrated prostheses. In: Branemark P., Zarb G.A., Albrektsson T., editors. Tissue-integrated prostheses. Chicago: Quintessence; 1985. pp. 199–209. [Google Scholar]
  • 24.Linkow L.I., Rinaldi A.W., Weiss W.W., Jr, Smith G.H. Factors influencing long-term implant success. J Prosthet Dent. 1990;63(1):64–73. doi: 10.1016/0022-3913(90)90269-I. [DOI] [PubMed] [Google Scholar]
  • 25.Bass S.L., Triplett R.G. The effects of preoperative resorption and jaw anatomy on implant success. A report of 303 cases. Clin Oral Implants Res. 1991;2(4):193–198. doi: 10.1034/j.1600-0501.1991.020406.x. [DOI] [PubMed] [Google Scholar]
  • 26.Hutton J.E., Health M.R., Chai J.Y., Harnett J., Jemt T., Johns R.B., et al. Factors related to success and failure rates at 3-year follow-up in a multicenter study of overdentures supported by Branemark implants. Int J Oral Maxillofac Implants. 1995;10(1):33–42. [PubMed] [Google Scholar]
  • 27.Canay S., Hersek N., Akpinar I., Asik Z. Comparison of stress distribution around vertical and angled implants with finite-element analysis. Quintessence Int. 1996;27(9):591–598. [PubMed] [Google Scholar]

Articles from Journal of Maxillofacial & Oral Surgery are provided here courtesy of Springer

RESOURCES