Abstract
Alcohol induced oxidative stress is linked to the metabolism of ethanol. In this study it has been observed that administration of ethanol in lower concentration caused gain in body and liver weight. while higher concentration of ethanol caused lesser gain in body and liver weight. Ethanol treatment enhanced lipid peroxidation significantly, depletion in levels of hepatic glutathione and ascorbate, accompanied by a decline in the activities of glutathione peroxidase and glutathione reductase, and increased in hepatic glutathione s-transferase activity. Interestingly catalase activity increases in lower concentration of ethanol exposure, and decreased in higher concentration. Superoxide dismutase activity was also increased on ethanol exposure. But, ethanol feeding did not show any effect on glucose-6-phosphate dehydrogenase activity. Ethanol ingestion perturbs the antioxidant system in a dose and time dependent manner.
Keywords: Ethanol, Antioxidants, Oxidative stress, Glutathione, Superoxide dismutase
Full Text
The Full Text of this article is available as a PDF (393.1 KB).
References
- 1.Das S.K., Nayak P, Vasudevan D.M. Biochemical markers for alcohol consumption. Ind. J. Clin. Biochem. 2003;18(2):111–118. doi: 10.1007/BF02867376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Ishii H., Kurose I., Kato S. Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J. Gastroenterol. Hepatol. 1997;12(9–10):272–282. doi: 10.1111/j.1440-1746.1997.tb00510.x. [DOI] [PubMed] [Google Scholar]
- 3.Fernandez-Checha J.C., Kaplowitz N., Colell A., Gracia-Ruiz C. Oxidative stress and alcoholic liver disease. Alcohol Health & Res. World. 1997;21(4):321–324. [PMC free article] [PubMed] [Google Scholar]
- 4.Dinu V., Zamfir O. Oxidative stress in ethanol intoxicated rats. Rev. Roum. Physiol. 1991;28(1–2):63–67. [PubMed] [Google Scholar]
- 5.Chandra R., Aneja R., Rewal C., Konduri R., Dass S.K., Agarwal S. An opium alkaloid-Papaverine ameliorates ethanol-induced hepatotoxicity: diminution of oxidative stress. Ind. J. Clin. Biochem. 2000;15(2):155–160. doi: 10.1007/BF02883745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Husain K., Scott B.R., Reddy S.K., Somani S.M. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol. 2001;25(2):89–97. doi: 10.1016/S0741-8329(01)00176-8. [DOI] [PubMed] [Google Scholar]
- 7.Oh S.I., Kim C.I., Chun H.J., Park S.C. Chronic ethanol consumption affects glutathione status in rat liver. J. Nutr. 1998;128(4):758–763. doi: 10.1093/jn/128.4.758. [DOI] [PubMed] [Google Scholar]
- 8.Chatterjee A.K., Sadhu U., Dalal B.B., Chatterjee T. Studies on certain drug metabolising enzymes in deoxypyridoxin treated rats. Jap. J. Phamacol. 1984;25:827–827. doi: 10.1254/jjp.34.367. [DOI] [PubMed] [Google Scholar]
- 9.Lowry O.H., Rosenbourgh N.J., Farr A.L., Randall R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 10.Roe J.H., Kuether C.A. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of dehydro ascorbic acid. J. Biol. Chem. 1943;147:399–401. [Google Scholar]
- 11.Sinnhuber R.O., Yu T.C., Yu T.C. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–630. [Google Scholar]
- 12.Ellman G.L. The sulphydryl groups. Arch. Biochem. Biophys. 1959;32:70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- 13.Beers R.F., Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxides by catalase. J. Biol. Chem. 1952;195:133–140. [PubMed] [Google Scholar]
- 14.Goldberg M.D., Spooner J.R. Glutathione reductase. In: Bergmayer H.U., Bergmayer J., Grabi M., editors. Methods Enzyme Analysis. 3nd edn. Florida: Academic Press, Inc.; 1983. pp. 258–265. [Google Scholar]
- 15.Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
- 16.Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J. Lab. Clin. Med. 1967;70:158–159. [PubMed] [Google Scholar]
- 17.Marklund S., Marklund G. Involvement of superoxide radical in the auto oxidation pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- 18.Beutler E. Glucose-6-phosphate dehydrogenas—New perspectives. Blood. 1988;73:1397–1397. [PubMed] [Google Scholar]
- 19.Husain K., Somani S.M. Interaction of exercise training and chronic ethanol ingestion on hepatic and plasma antioxidant system in rat. J. Appl. Toxicol. 1997;17(3):189–194. doi: 10.1002/(SICI)1099-1263(199705)17:3<189::AID-JAT431>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- 20.McCord J.M. Superoxide dismutase. In: Tattazzi M.C., Scanalios J.G., Whitt G.S., Alan R., editors. Isozyme: Current topics in biological and medica research. New York: Liss Inc.; 1979. [Google Scholar]
- 21.Marklund S. Properties of extracellular superoxide dismutase from human lung. Biochem. J. 1984;220:269–272. doi: 10.1042/bj2200269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Fridovich I. Superoxide dismutases. J. Biol. Chem. 1999;264:7761–7764. [PubMed] [Google Scholar]
- 23.Koch O., Farre S., DeLeo M.E., Palozza P., Palazzotti B., Borrelo S., Palombini G., Cravero A., Galeotti T. Regulation of manganese superoxide dismutase (MnSOD) in chronic experimental alcoholism: effects of vitamin E-supplemented and-deficient diets. Alcohol Alcohol. 2000;35(2):159–163. doi: 10.1093/alcalc/35.2.159. [DOI] [PubMed] [Google Scholar]
- 24.Aniya Y., Daido A. Activation of microsomal glutathione S-transferase in tert-butyl hydroperoxide-induced oxidative stress of isolated rat liver. Jpn. J. Phamacol. 1994;66(1):123–130. doi: 10.1254/jjp.66.123. [DOI] [PubMed] [Google Scholar]