Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2005 Jan;20(1):35–42. doi: 10.1007/BF02893039

Biochemical diagnosis of alcoholism

Subir Kumar Das 1,, D M Vasudevan 1
PMCID: PMC3454181  PMID: 23105491

Abstract

Medically diagnosed alcoholics can be differentiated reliably from non-alcoholics using clinically laboratory tests. In the present study, patients with liver diseases either due to alcohol or without alcohol compared with a group of normal healthy persons. Heavy drinkers showed significantly lower body weight and percent body fat, and low BMI compared with other groups. The percentage of hemoglobin and total number of RBC were found to be significantly decreased, whereas mean corpuscular volume (MCV) significantly increased in alcoholic liver disease (ALD). Hyperbilirubinemia, hyperuricemia and hypoalbuminemia correlate with alcohol intake. Albumin/globulin ratio significantly decreased in ALD. In acute liver injury AST/ALT ratio is ≤1.0, whereas in alcoholic hepatitis it is always >1.0. Moderately elevated level of ALP and high GGT values are good discriminator of alcoholic patients. Alcohol-induced liver injury is linked to oxidative stress as observed by decreased level of reduced glutathione and ascorbic acid, and increased level of thiobarbituric acid reactive substances.

Key Words: Alcohol, Biochemical marker, g-Glutamyltransferase, Aminotransferase, Glutathione

Full Text

The Full Text of this article is available as a PDF (789.5 KB).

References

  • 1.Gyatso, TR., Bagdas, BB; (1998) In: Health Status In Sikkim. (Dept. of Health and Family Welfare, Govt. of Sikkim).
  • 2.Nevins, C.L.; Malaty, H.; Velez, M.E.; Anand, B.S. (1999) Interaction of alcohol and hepatitis C virus infection on severity of liver disease. Dig Dis and Sci, 1236–1242. [DOI] [PubMed]
  • 3.Bellentani S., Saccocio G., Masutti F., Giacca M., Miglioli L., Monzoni A., Tiribelli C. Risk factors for alcoholic liver disease. Addiction Biology. 2000;5(3):261–268. doi: 10.1111/j.1369-1600.2000.tb00190.x. [DOI] [PubMed] [Google Scholar]
  • 4.Fickert P., Zatloukal K. Pathogenesis of alcoholic liver disease. In: Zemig G., Saria A., Kurz M., O’Malley S.S., editors. Handbook of Alcoholism. Boca Raton, FL: CRC Press; 2000. pp. 317–323. [Google Scholar]
  • 5.Das SK, Nayak P, Vasudevan DM. Biochemical markers of alcohol consumption. Ind J Clin Biochem. 2003;18(2):111–118. doi: 10.1007/BF02867376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chalmers DM, Grinsler MG, MacDermott S, Spicer CC, Levi AJ. Biochemical and haematological indicators of excessive alcohol consumption. Gut. 1981;22:992–996. doi: 10.1136/gut.22.12.992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Paton A. Asking the right questions. In: Paton A., editor. ABC of Alcohol. Tavistock square, London: BMJ Publishing Group; 1994. pp. 14–14. [Google Scholar]
  • 8.Foster DW (1992). Eating disorders: obesity, anorexia nervosa and Bullimina nervosa. In: Williams Textbook of Endocrinology; 8th Edn. W.B.Saunders (Eds. J.W. Wilson and D.W. Foster) p.1336.
  • 9.Kampen EJ, Zijlstra WG. Determination of hemoglobin and its derivatives. Adv Clin Chem. 1965;8:141–187. doi: 10.1016/s0065-2423(08)60414-x. [DOI] [PubMed] [Google Scholar]
  • 10.Tiffany TO, Jansen JM, Burtis CA, et al. Enzymatic kinetic rate and endpoint analysis of substrate by use of GEMSAEC fast analyzer. Clin Chem. 1972;18:829–829. [PubMed] [Google Scholar]
  • 11.Larsen K. Creatinine assay by a reaction kinetic principle. Clin Chem Acta. 1972;41:209–209. doi: 10.1016/0009-8981(72)90513-X. [DOI] [PubMed] [Google Scholar]
  • 12.Gochman N, Schmitz JM. Automated determination of uric acid with use of a uricase-peroxidase system. Clin Chem. 1971;17:1154–1154. [PubMed] [Google Scholar]
  • 13.Jendrassik L., Grof P. Biochem Z. 1938;297:81–81. [Google Scholar]
  • 14.Doumas BT, Peter T. Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta. 1997;258:3–20. doi: 10.1016/S0009-8981(96)06446-7. [DOI] [PubMed] [Google Scholar]
  • 15.Kingsley GR. The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med. 1942;27:840–845. [Google Scholar]
  • 16.Linhardt K, Walter K. Phosphatase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. New York: Academic Press; 1963. pp. 799–799. [Google Scholar]
  • 17.Bergmeyer HU, Bernt E. Glutamate oxaloacetate transaminase; Glutamate pyruvate transaminase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. New York: Academic Press; 1963. pp. 837–853. [Google Scholar]
  • 18.Gowelock, A.H. (1988) In: Varley’s Practical Clinical Biochemistry. 6th edn. Heinemann Professional Publishing, p.519
  • 19.McCormick DB, Greene HL. Vitamin. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. USA: W.B. Saunders Company; 1998. pp. 1025–1025. [Google Scholar]
  • 20.Sinnhuber RO, Yu TC, Yu TC. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–630. [Google Scholar]
  • 21.Beutler E, Duron O, Kelly BM. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61:882–888. [PubMed] [Google Scholar]
  • 22.Addolorato G, Capristo E, Greco AV, Stefanini GF, Gasbarrini G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J Intern Med. 1998;244(5):387–395. doi: 10.1046/j.1365-2796.1998.00381.x. [DOI] [PubMed] [Google Scholar]
  • 23.World MJ, Ryle PR, Jones D, Shaw GK, Thomson AD. Differential effect of chronic alcohol intake and poor nutrition on body weight and fat stores. Alcohol Alcohol. 1984;19(4):281–290. [PubMed] [Google Scholar]
  • 24.Addolorato G, Capristo E, Marini M, Santini P, Scognamiglio U, Attilia ML, Messineo D, Sasso GF, Gasbarrini G, Ceccanti M. Body composition changes induced by chronic ethanol abuse: evaluation by dual energy X-ray absorptiometry. Am J Gastroenterol. 2000;95(9):2323–2327. doi: 10.1111/j.1572-0241.2000.02320.x. [DOI] [PubMed] [Google Scholar]
  • 25.Nordmann R, Rouach H. Alcohol and free radicals: from basic research to clinical prospects. Gastroenterol Hepatol. 1996;32(3):128–133. [PubMed] [Google Scholar]
  • 26.Whitfield JB, Hensley WJ, Bryden D, Gallagher H. Some laboratory correlates of drinking habits. Annals Clin Biochem. 1978;15:297–303. doi: 10.1177/000456327801500171. [DOI] [PubMed] [Google Scholar]
  • 27.Ahlgren A, Hedenborg G, Norman A, Wisen O. Serum bilirubin subfractions in patients with alcohol abuse during detoxication. Scand J Clin Lab Invest. 1988;48(4):319–26. doi: 10.3109/00365518809167502. [DOI] [PubMed] [Google Scholar]
  • 28.Annoni G, Arosio B, Santambrogio D, Gagliano N, Zem MA. Albumin and procollagen type I gene regulation in alcohol and viral-induced human liver disease. Boll Ist Sieroter Milan. 1991;70(1–2):391–397. [PubMed] [Google Scholar]
  • 29.Oratz M, Rothschild MA, Schreiber SS. Alcohol, amino acids, and albumin synthesis. II. Alcohol inhibition of albumin synthesis reversed by arginine and spermine. Gastroenterology. 1976;71(1):123–127. [PubMed] [Google Scholar]
  • 30.Waern AU, Hellsing K. Indices of alcohol intake. Comparison between serum concentrations of alkaline phosphatase and gamma glutamyltransferase in middle-aged men. Ups J Med Sci. 1980;85(2):159–163. doi: 10.3109/03009738009179183. [DOI] [PubMed] [Google Scholar]
  • 31.Schimdt E, Schimdt FW. Enzyme diagnosis in diseases of the liver and biliary system. In: Schimdt E, Schimdt FW, Trautschold I, Friedel R, editors. Advances in Clinical Enzymology. Basel: Karger; 1979. pp. 232–292. [Google Scholar]
  • 32.Nalpas B, Vassault A, LeGuillou A, et al. Serum activity of mitochondrial aspartate amino transferase: a sensitivity marker of alcoholism with or without alcoholic hepatitis. Hepatology. 1984;4:893–896. doi: 10.1002/hep.1840040517. [DOI] [PubMed] [Google Scholar]
  • 33.Krastev Z, Mateva L, Danev S, Nikolov R. clinical meaning of GGT activity in follow-up of patients with alcohol-related liver injury and cholestasis. Ital J Gastroenterol. 1992;24(4):185–187. [PubMed] [Google Scholar]
  • 34.Rosalki S. Identifying the alcoholic. In: Rosalki S, editor. Clinical Biochemistry of Alcoholism. Edinburgh: Churchill, Livingstone; 1984. pp. 65–92. [Google Scholar]
  • 35.Daeppen JB, Schoenfeld-Smith K, Smith TL, Schuckit MA. Characteristics of alcohol dependent subjects with very elevated levels of Gamma-Glutamyltransferase (GGT) J Stud Alcohol. 1999;60(5):589–594. doi: 10.15288/jsa.1999.60.589. [DOI] [PubMed] [Google Scholar]
  • 36.Chandra R, Aneja R, Rewal C, Konduri R, Dass SK, Agarwal S. An opium alkaloid-Papaverine ameliorates ethanol-induced hepatotoxicity: diminution of oxidative stress. Ind J Clin Biochem. 2000;15(2):155–160. doi: 10.1007/BF02883745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Minor T, Isselhard W. Role of the hepato vasculature in free radical mediated reperfusion damage of the liver. Eur Surg Res. 1993;25(5):287–293. doi: 10.1159/000129291. [DOI] [PubMed] [Google Scholar]
  • 38.Videla LA, Iturriaga H, Pino ME, Bunout D, Valenzuela A, Ugarte G. Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of the abstinence and liver necrosis. Clin Sci. 1984;66:283–290. doi: 10.1042/cs0660283. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES