Abstract
Terminalia arjuna (T. arjuna) stem bark was successively extracted with petroleum ether (A), solvent ether (B), ethanol (C) and water (D). The lipid lowering activity of these four fractions A, B, C, and D was evaluatedin vivo in two models viz., triton WR-1339 induced hyperlipemia in rats as well as fructose rich high fat diet (HFD) fed diabetic- dyslipidemic hamsters. Hyperlipidemia induced by triton caused marked increase in the plasma levels of total cholesterol (Tc), triglyceride (Tg) and phospholipids (PL) in rats. After treament withT. arjuna fractions A, B, C, and D at the doses of 250 mg/kg per oral (p.o.),only the ethanolic fraction (C) exerted significant lipid lowering effect as assessed by reversal of plasma levels of Tc, Tg and PL in hyperlipidemic rats. In another experiment, feeding with HFD produced marked dyslipidemia as observed by increased levels of plasma Tc, Tg, glucose (Glu), glycerol (Gly) and free fatty acids (FFA) in hamsters. After treatment withT. arjuna fractions at the doses of 250 mg/kg p.o. only two fraction (B and C) could exert significant lowering in the plasma levels of lipids and Glu. in dyslipidemic hamsters.In vitro experimentT. arjuna fractions at tested concentrations (50–500 μg/ml) inhibited the oxidative degradation of lipids in human low density lipoprotein and rat liver microsomes induced by metal ions. These fractions when tested against generation of oxygen free radicals at the concentrations (50–500 μg/ml), counteracted the formation of superoxide anions (O−2) and hydrodyl radicals (OH) in non enzymic test systems. The efficacy ofT. arjuna fractions as antidyslipidemic and antioxidant agents was found, fraction C> fraction B> fraction A.
Key Words: Antidyslipidemic activity, antioxidant activity, Terminalia arjuna oxygen free radical, triton model, hamster model
Full Text
The Full Text of this article is available as a PDF (633.4 KB).
References
- 1.Nandkarni A.K. In: Indian Materia Medica. Nandkarni A.K., Nandkarni K.M., editors. Mumbai: Popular Prakashan Private Limited; 1976. pp. 1199–1202. [Google Scholar]
- 2.Nesamony S. Ovshadhya Sasyangai (Medicinal plants) India: State Institute for Language Kerala; 1988. pp. 314–316. [Google Scholar]
- 3.Tiwari A.K., Gode J.D., Dubey G.P. Effect ofTeminalia arjuna on lipid profiles of rabbits fed hypercholesterolemic diet. Int. J. Crude Drug Res. 1990;28:43–47. [Google Scholar]
- 4.Khanna A. K., Chander R., Kapoor N.J. Terminalia arjuna an Ayurvedic cardiotonic regulates lipid metabolism in hyperlipaemic rats. Phytotherapy Res. 1996;10:663–665. doi: 10.1002/(SICI)1099-1573(199612)10:8<663::AID-PTR935>3.0.CO;2-W. [DOI] [Google Scholar]
- 5.Shaila H.P., Udupa S.L., Udupa A.L., Nair N.S. Effect ofTerminalia arjuna on experimental hyperlipidemia in rabbits. Int. J. Pharmacol. 1997;35:1–4. doi: 10.1076/phbi.35.1.1.13269. [DOI] [Google Scholar]
- 6.Gauthaman K., Maulik M., Kumari R., Manchandra S.C., Dinda A.K., Maulik S.K. Effect of chronic treatment with bark ofTerminalia arjuna a study in isolated ischemic-reperfused rat heart. J. Ethnopharmacol. 2001;75:197–201. doi: 10.1016/S0378-8741(01)00183-0. [DOI] [PubMed] [Google Scholar]
- 7.Dwivedi S., Gupta D. Efficacy ofTerminalia arjuna in chronic stable angina. Ind. Heart J. 2002;54:170–175. [PubMed] [Google Scholar]
- 8.Gupta, R. and Nair, S. (1997) Antioxidant flavonoides in Indian diet. In:Current Advances in Atherosclerosis Research Part I, Shyam Singh, Ed., Central Drug Research Institute, 35–50.
- 9.Kandil, F.E., and Soliman, A.M. (1998) A new tannin anticancer promotor fromTerminalia arjuna. 2nd International Electronic Conference on Synthetic Organic Chemistry (ECSOC-2), Sept, 1–30 pp. dp 002.
- 10.Kaur K., Arora S., Kumar S., Nagpal A. Antimutagenic activities of acetone and methanol fractions ofTerminalia arjuna. Food Chem. Toxicol. 2002;40:1475–1482. doi: 10.1016/S0278-6915(02)00078-9. [DOI] [PubMed] [Google Scholar]
- 11.Sumitra M., Manikandan P., Kumar A.D., Arutselven N., Balakrishna K., Manohar M.B., Puvanakrishnan R. Experimental myocardial necrosis in rats: role of arjunolic acid on platelet aggregation, coagulation and antioxidant status. Mol. Cell. Biochem. 2001;224:135–142. doi: 10.1023/A:1011927812753. [DOI] [PubMed] [Google Scholar]
- 12.Row L.R., Murty P.S., Rao G.S.R., Sastry C.S.P., Rao K.V.J. Chemical examination of Terminalia species: Part XII-Isolation and structure determination of arjunic acid, a new trihydroxytriterpene carboxylic acid fromTerminalia arjuna bark. Ind. J. Chem. 1070;8:716–721. [Google Scholar]
- 13.Deeg R., Ziegenhorn J. Kinetic enzymetic method for automated determination of total cholesterol in serum. Clin. Chem. 1983;29:1798–1803. [PubMed] [Google Scholar]
- 14.Buccolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 1973;19:476–480. [PubMed] [Google Scholar]
- 15.Zilversmit D.B., Davis A.K., Memphis B.S., Tenn Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 1950;35:155–160. [PubMed] [Google Scholar]
- 16.Gordon D.J., Probstfield J.L., Garrison R.J., Neaton J.D., Jacobs D.R., Bangdiwala S., Tyroler H. A. High-density lipoprotein cholesterol and cardiovascular Disease: four prospective American studies. Circulation. 1898;79:8–14. doi: 10.1161/01.cir.79.1.8. [DOI] [PubMed] [Google Scholar]
- 17.Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969;6:24–30. [Google Scholar]
- 18.Gowan M. W., Artiss J. D., Strandbergh D. R., Zak B. A peroxidase coupled method for the colorimetric determination of glycerol. Clin. Chem. 1983;29:538–542. [PubMed] [Google Scholar]
- 19.Wako pure Chemicals Ltd.NAFAC, Quantitative determination of free fatty acid in serum by ACS-ACOD method. Company Code No. 994-75409E.
- 20.Havel R. J., Edor H. A., Bingdon J. A. The distribution and chemical composition of Ultra centrifugically separated lipoproteins in human serum. J. Clin. Invest. 1955;34:1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Okhawa H. Qohishi. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1978;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
- 22.Devasagayan T.P.A., Tarachand U. Decrease lipid peroxidation in rat kidney during gestation. Biochem. Biophys. Res. Comm. 1987;145:134–138. doi: 10.1016/0006-291X(87)91297-6. [DOI] [PubMed] [Google Scholar]
- 23.Bindoli A., Valente M., Cavallin L. Inhibition of xanthine oxidase and xanthine dehydrogenase activity. Pharmacol. Res. Commun. 1985;17:831–839. doi: 10.1016/0031-6989(85)90041-4. [DOI] [PubMed] [Google Scholar]
- 24.Halliwell B., Gutteridge J.M.C, Arouma O. The deoxyribose method: A simple test rube assay for determination of rate constants for reaction of OH radicals. Anal. Biochem. 1987;165:215–219. doi: 10.1016/0003-2697(87)90222-3. [DOI] [PubMed] [Google Scholar]
- 25.Parthasrthy S., Steinbert D., Switztum J.L. The role of oxidized low- density lipoproteins in the pathogenesis of atherosclerosis. Annu. Rev. Med. 1992;43:219–225. doi: 10.1146/annurev.me.43.020192.001251. [DOI] [PubMed] [Google Scholar]
- 26.Stehouwer C.D.A., Lambert J., Donker A. J.M, Vanhinsbergh V.W.M. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc. Res. 1997;34:55–61. doi: 10.1016/S0008-6363(96)00272-6. [DOI] [PubMed] [Google Scholar]
- 27.Asahina T., Kashiwagi A., Nishio Y. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high glucose medium. Diabetes. 1995;44:520–526. doi: 10.2337/diabetes.44.5.520. [DOI] [PubMed] [Google Scholar]
- 28.Schurr P.E., Schultz J.R., Parkinson T.M. Triton induced hyperlipidemia in rats as an animal model for screening of hypolipidemic drugs. Lipids. 1972;7:68–74. doi: 10.1007/BF02531272. [DOI] [PubMed] [Google Scholar]
- 29.Rizvi F., Puri A., Bhatia G., Khanna A.K., Wulff E.M., Rastogi A.K., Chander R. Antidyslipidemic action of fenofibrate in dyslipidemic- diabetic hamster model. Biochem. Biophys. Res. Comm. 2003;305:215–222. doi: 10.1016/S0006-291X(03)00721-6. [DOI] [PubMed] [Google Scholar]
- 30.Chander R., Rizvi F., Khanna A. K., Pratap R. Cardioprotective activity of synthetic Guggulsterone (E and Z isomers) in isoproterenol induced myocardial Ishemia in rats: A comparative study. I.J.E.B. 2003;18:71–79. doi: 10.1007/BF02867370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Overtuft M.L., Loose M.D.C. In vivo model system: The choice of the experimental model for the analysis lipoproteins and atherosclerosis. Curr. Opinn. Lipidol. 1992;3:179–179. doi: 10.1097/00041433-199206000-00004. [DOI] [Google Scholar]
- 32.Owens D. R. Insulin secretion and sensitivity in newly diagnosed NIDDM Caucasions in UK. Diabet. Med. 1996;13:S19–S24. [PubMed] [Google Scholar]
- 33.Halliwell B., Gutteridge J.N.C. Free radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press; 1989. [DOI] [PubMed] [Google Scholar]
- 34.Chander R., Kapoor N.K., Dhawan B.N. Picroliv, Picroside-1 and Kutkoside fromPicrorhiza kurrooa are scavengers of superoxide anions. Biochem. Pharmacol. 1992;44:180–183. doi: 10.1016/0006-2952(92)90054-M. [DOI] [PubMed] [Google Scholar]
- 35.Row L. R., Murti D.S., Subba Rao G.S.R., Sastry C.S. P., Rao K.V.F. Chemical examination ofTerminalia species: Part III-Isolation and structure determination of arjunetin fromTerminalia arjuna, species. Ind. J. Chem. 1970;8:772–775. [Google Scholar]
- 36.Ali A., Kaur G., Hamid H., Abdullah T., Ali M., Niwa M., Alam M.S. Terminoside A, a new triterpene glycoside from the bark ofTerminalia arjuna inhibits nitric oxide production in murine macrophages. J. Asian Nat. Prod. Res. 2003;5:137–142. doi: 10.1080/1028602031000066834. [DOI] [PubMed] [Google Scholar]
- 37.Singh K., Khanna A. K., Visen P.K.S., Chander R. Protective effect of ellagic acid on t-butyl hydroperoxide induced peroxidation in isolated rat hepatocytes. Ind. J. Exp. Biol. 1999;37:939–940. [PubMed] [Google Scholar]
- 38.Singh K., Khanna A.K., Chander R. Hepatoprotective activity of ellagic acid against carbon tetrachloride induced hepatotoxicity in rats. Ind. J. Exp. Biol. 1999;37:1025–1026. [PubMed] [Google Scholar]