Abstract
Present study aimed to evaluate the protective role of the aqueous extract of Phyllanthus niruri (P. niruri) against nimesulide-induced hepatic disoder in mice by determining levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and alkaline phosphatase (ALP) in serum and also by measuring the hepatic content of the antioxidant enzymes, superoxide dismitase (SOD) and catalase (CAT); the free radical scavenger, reduced glutathione (GSH) and thiobarbituric acid reacting substances (TBARS). Aqueous extract of P. niruri was administered either orally or intraperitoneally in different doses and times as needed for the experiments. Intraperitoneal of the extract (100 mg/kg body weight for seven days) reduced nimesulide (750 mg/kg body weight for 3 days) induced increased levels of GOT (37.0±1.8 units/ml in control group vs. 91.8±2.0 units/ml in nimesulide treated group vs. 35.0±1.0 units/ml in extract treated group), GPT (30.0±2.1 units/ml in control group vs. 88.4±2.9 units/ml in nimesulide treated group vs. 34.1±1.8 units/ml in extract treated group), and ALP (7.86±0.47 KA units/ml in control group vs. 23.80±0.60 KA units/ml in nimesulide treated group vs. 7.30±0.40 KA units/ml, in extract treated group) to almost nomal. In addition, P. niruri restored the nimesulide induced alterations of hepatic SOD (550±20 units/mg total protein in control group vs. 310±13 units/mg total protein in nimesulide treated group vs. 515±10 units/mg total protein in extract treated group), CAT (99.5±2 units/mg total protein in control group vs. 25.0±1.5 units/mg total protein in nimesulide treated group vs. 81.0±0.8 units/mg total protein in extract treated group), GSH (90±3 nmoles/mg total protein in control group vs. 17±4.2 nmoles/mg total protein in nimesulide treated group vs. 81±1 nmoles/mg total protein in extract treated group) and TBARS (measured as MDA, 36.6±3.0 nmoles/g liver tissue in control group vs. 96.3±5.2 nmoles/g liver tissue in nimesulide treated group vs. 41.2±1.7 nmoles/g liver tissue in extract treated group) contents. Dose-dependent studies showed that the herb could protect liver even if the nimesulide-induced injury is severe. Intraperitoneal administration of the extract showed better protective effect than oral administration. Combining all, the data suggest that P. niruri possesses hepatoprotective activity against nimesulide-induced liver toxicity and probably acts via an antioxidant defense mechanism. To the best of our knowledge, this is the first report of the hepatoprotective action of P. niruri against nimesulide induced liver damage.
Key Words: Nimesulide, oxidative stress, hepatotoxicity, Phyllanthus niruri, antioxidant, hepatoprotection
Full Text
The Full Text of this article is available as a PDF (87.9 KB).
References
- 1.Jaeschke H, Gores GJ, Cederbaum AL, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65:166–76. doi: 10.1093/toxsci/65.2.166. [DOI] [PubMed] [Google Scholar]
- 2.Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, et al. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol. 2005;42:117–23. doi: 10.1016/j.jhep.2004.09.020. [DOI] [PubMed] [Google Scholar]
- 3.Uzun H, Simsek G, Aydin S., Unal E, Karter Y, Yelmen NK, et al. Potential effects of L-NAME on alcohol-induced oxidative stress. World J Gastroenterol. 2005;11:600–4. doi: 10.3748/wjg.v11.i4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Sultana S, Ahmed S, Sharma S, Jahangir T. Emblica officinalis reverses thioacetamide-induced oxidative stress and early promotional events of primary hepatocarcinogenesis. J Pharm Pharmacol. 2004;56:1573–9. doi: 10.1211/0022357044931. [DOI] [PubMed] [Google Scholar]
- 5.Bruck R, Aeed H, Avni Y, Shirin H, Matas Z, Shahmurov M, et al. Melatonin inhibits nuclear factor kappa B activation and oxidative stress and protects against thioacetamide induced liver damage in rats. J Hepatol. 2004;40:86–93. doi: 10.1016/S0168-8278(03)00504-X. [DOI] [PubMed] [Google Scholar]
- 6.Megli FM, Sabatini K. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury in vivo. FEBS Lett. 2004;573:68–72. doi: 10.1016/j.febslet.2004.07.057. [DOI] [PubMed] [Google Scholar]
- 7.Myagmar BE, Shinno E, Ichiba T, Aniya Y. Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats. Phytomedicine. 2004;11:416–23. doi: 10.1016/j.phymed.2003.04.003. [DOI] [PubMed] [Google Scholar]
- 8.Bei W, Peng W, Ma Y, Xu A. NaoXinQing, an anti-stroke herbal medicine, reduces hydrogen peroxide-induced injury in NG108-15 cells. Neurosci Lett. 2004;363:262–5. doi: 10.1016/j.neulet.2004.04.031. [DOI] [PubMed] [Google Scholar]
- 9.Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279:8919–29. doi: 10.1074/jbc.M309660200. [DOI] [PubMed] [Google Scholar]
- 10.Gyamfi MA, Aniya Y. Antioxidant properties of Thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea. Biochem Pharmacol. 2002;63:1725–37. doi: 10.1016/S0006-2952(02)00915-2. [DOI] [PubMed] [Google Scholar]
- 11.Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghett A, Crespi-Perellino N, Mirasoli M, Cantelli-Forti G, Paolini M. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci. 2000;67:2997–3006. doi: 10.1016/S0024-3205(00)00885-7. [DOI] [PubMed] [Google Scholar]
- 12.Chauhan CK, Nanivadekar SA, Billimoria FR. Effect of a herbal hepatoprotective product on drug metabolism in patients of cirrhosis and hepatic enzyme function in experimental liver damage. Ind J Pharmacol. 1992;24:107–10. [Google Scholar]
- 13.Lin TJ, Su CC, Lan CK, Jiang DD, Tsai JL, Tsai MS. Acute poisonings with Breynia officinalis—an outbreak of hepatotoxicity. J Toxicol Clin Toxicol. 2003;41:591–4. doi: 10.1081/CLT-120023760. [DOI] [PubMed] [Google Scholar]
- 14.Naik AD, Juvekar AR. Effects of alkaloidal extract of Phyllanthus niruri on HIV replication. Indian J Med Sci. 2003;57:387–93. [PubMed] [Google Scholar]
- 15.Unander DW, Webster GL, Blumberg BS. Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J Enthnopharmacol. 1995;45:1–18. doi: 10.1016/0378-8741(94)01189-7. [DOI] [PubMed] [Google Scholar]
- 16.Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, Bruyne T, Pieters L, Totte J, Vlietinck AJ. Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo. J Ethnopharmacol. 1999;68:193–203. doi: 10.1016/S0378-8741(99)00090-2. [DOI] [PubMed] [Google Scholar]
- 17.Odetola AA, Akojenu SM. Anti-diarrhoeal and gastro-intestinal potentials of the aqueous extract ofPhyllanthus amarus (Euphorbiaceae) Afr J Med Sci. 2000;29:119–22. [PubMed] [Google Scholar]
- 18.Asha VV, Akhila S, Wills PJ, Subramoniam A. Further studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J Ethnopharmacol. 2004;92:67–70. doi: 10.1016/j.jep.2004.02.005. [DOI] [PubMed] [Google Scholar]
- 19.Padma P, Setty OH. Protective effect of Phyllanthus against CCl4-induced mitochondrial dysfunction. Life Sci. 1999;64:2411–7. doi: 10.1016/S0024-3205(99)00195-2. [DOI] [PubMed] [Google Scholar]
- 20.Sebastian T, Setty OH. Protective effect ofPhyllanthus against ethanol-induced mitochondrial dysfunction. Alcohol. 1999;17:29–34. doi: 10.1016/S0741-8329(98)00029-9. [DOI] [PubMed] [Google Scholar]
- 21.Jeena KJ, Joy KL, Kuttan R. Effect of Emblica officianlis,Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett. 1999;136:11–6. doi: 10.1016/S0304-3835(98)00294-8. [DOI] [PubMed] [Google Scholar]
- 22.Giuliano F, Ferraz JG, Pereira R, Nucci G, Warner TD. Cyclooxygenase selectivity of non-steroidal anti-inflammatory drugs in humans: ex vivo evaluation. Eur J Pharmacol. 2001;426:95–103. doi: 10.1016/S0014-2999(01)01207-9. [DOI] [PubMed] [Google Scholar]
- 23.Bennett A. Overview of nimesulide. Rheumatology (Oxford) 1999;38(Suppl 1):1–3. doi: 10.1093/rheumatology/38.suppl_1.1. [DOI] [PubMed] [Google Scholar]
- 24.Davis R, Brogden RN. Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs. 1994;48:431–54. doi: 10.2165/00003495-199448030-00008. [DOI] [PubMed] [Google Scholar]
- 25.McCormick PA, Kennedy F, Curry M, Traynor O. COX 2 inhibitor and fulminant hepatic failure. Lancet. 1999;353:40–1. doi: 10.1016/S0140-6736(05)74867-4. [DOI] [PubMed] [Google Scholar]
- 26.Schattner A, Sokolovskaya N, Cohen J. Fatal hepatitis and renal failure during treatment with nimesulide. J Intern Med. 2000;247:153–5. doi: 10.1046/j.1365-2796.2000.00612.x. [DOI] [PubMed] [Google Scholar]
- 27.Lucena MI, Camargo R, Andrade RJ, Perez-Sanchez CJ, Sanchez De La Cuesta F. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology. 2001;33:123–30. doi: 10.1053/jhep.2001.20645. [DOI] [PubMed] [Google Scholar]
- 28.Rodrigo L, Francisco R, Perez-Pariente JM, Cadahia V, Tojo R, Rodriguez M, Lucena MI, Andrade RJ. Nimesulide-induced severe hemolytic anemia and acute liver failure leading to liver transplantation. Scand J Gastroenterol. 2002;37:1341–3. doi: 10.1080/003655202761020650. [DOI] [PubMed] [Google Scholar]
- 29.Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63. doi: 10.1093/ajcp/28.1.56. [DOI] [PubMed] [Google Scholar]
- 30.Kind PRN, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954;7:322–6. doi: 10.1136/jcp.7.4.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46:849–54. doi: 10.1016/S0006-291X(72)80218-3. [DOI] [PubMed] [Google Scholar]
- 32.Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984; 21130–2. [PubMed]
- 33.Bonaventura J, Schroeder WA, Fang S. Human erythrocyte catalase: an improved method of isolation and a revaluation of reported properties. Arch Biochem Biophys. 1972;150:606–17. doi: 10.1016/0003-9861(72)90080-X. [DOI] [PubMed] [Google Scholar]
- 34.Ellman GL. Tissue sulphydryl group. Arch Biochem Biophys. 1959;82:70–7. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- 35.Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods enzymol. 1990;186:407–21. doi: 10.1016/0076-6879(90)86134-H. [DOI] [PubMed] [Google Scholar]
- 36.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- 37.Sbeit W, Krivoy N, Shiller M, Farah R, Cohen HI, Struminger L, et al. Nimesulide-induced acute hepatitis. Ann Pharmacother. 2001;35:1049–52. doi: 10.1345/aph.10242. [DOI] [PubMed] [Google Scholar]
- 38.Steenbergen W, Peeters P, Bondt J, Staessen D, Buscher H, Laporta T, et al. Nimesulide-induced acute hepatitis: evidence from six cases. J Hepatol. 1998;29:135–41. doi: 10.1016/S0168-8278(98)80188-8. [DOI] [PubMed] [Google Scholar]
- 39.Bernareggi A. Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet. 1998;35:247–74. doi: 10.2165/00003088-199835040-00001. [DOI] [PubMed] [Google Scholar]
- 40.Berson A, Wolf C, Berger V, Fau D, Chachaty C, Fromenty B, et al. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J Pharmacol Exp Ther. 1991;257:714–9. [PubMed] [Google Scholar]
- 41.Ritter CL, Malejka-Giganti D. Nitroreduction of nitrated and C-9 oxidized fluorenesin vitro. Chem Res Toxicol. 1998;11:1361–7. doi: 10.1021/tx980152w. [DOI] [PubMed] [Google Scholar]
- 42.Mingatto FE, Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C. Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol. 2000;131:1154–60. doi: 10.1038/sj.bjp.0703667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Kizaki M, Sakashita A, Karmakar A, Lin CW, Koeffler HP. Regulation of manganese superoxide dismutase and other antioxidant genes in normal and leukemic hematopoietic cells and their relationship to cytotoxicity by tumor necrosis factor. Blood. 1993;82:1142–50. [PubMed] [Google Scholar]
- 44.Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266:22028–34. [PubMed] [Google Scholar]
- 45.Halliwell B, Gutteridge JMC. Free radicals in biology and Medicine. 3rd ed. Oxford: Oxford University Press; 1999. pp. 237–48. [Google Scholar]
