Abstract
The serum markers of myocardial injury are used to help in establishing the diagnosis of myocardial infarction. The older markers like aspartate amino-transferase, creatine kinase, lactate dehydrogenase etc. lost their utility due to lack of specificity and limited sensitivities. Among the currently available markers cardiac troponins are the most widely used due to their improved sensitivity specificity, efficiency and low turn around time. Studies have shown that cardiac troponins should replace CKMB as the diagnostic ‘gold standard’ for the diagnosis of myocardial injury. The combination of myoglobin with cardiac troponins has further improved the accuracy in the diagnosis of acute coronary syndromes and thereby reducing the hospital stay and patients' money. Among the other new markers of early detection of myocardial damage, heart fatty acid binding protein, glycogen phosphorylase BB and myoglobin/carbonic anhydrase III ratio seem to be the most promising. But the search for the most ideal marker of myocardial injury is still on.
Key words: Cardiac markers, Myocardial infarction
Full Text
The Full Text of this article is available as a PDF (78.3 KB).
References
- 1.Nomenclature and criteria for diagnosis of Ischaemic Heart Disease: Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on standardization of clinical nomenclature Circulation. 1979;59:607–08. doi: 10.1161/01.cir.59.3.607. [DOI] [PubMed] [Google Scholar]
- 2.Alpert JS, Thygeson K, Antman E, et al. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69. doi: 10.1016/S0735-1097(00)00804-4. [DOI] [PubMed] [Google Scholar]
- 3.Queen MJ, Holdir D, El-Maraglin NR. Assessment of the accuracy of serial electrocardiograms in the diagnosis of myocardial infarction. Am Heart J. 1983;105:258–61. doi: 10.1016/0002-8703(83)90524-0. [DOI] [PubMed] [Google Scholar]
- 4.Armstrong SC. Protein kinase activation and myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2004;61:427–36. doi: 10.1016/j.cardiores.2003.09.031. [DOI] [PubMed] [Google Scholar]
- 5.Varley H, Gowenlock AH, Bell M. Practical Clinical Biochemistry. 5th edn. London: William Heinemann Medical Books Ltd; 1984. Enzymes; pp. 685–770. [Google Scholar]
- 6.Baron DN, Bell JL, Oakley C. Serum transaminase in coronary thrombosis and other conditions. J Clin Path. 1956;9:389–90. doi: 10.1136/jcp.9.4.358. [DOI] [Google Scholar]
- 7.Agress CM. Evaluation of the transaminase test. Am J Cardiol. 1979;3:74–93. doi: 10.1016/0002-9149(59)90398-4. [DOI] [PubMed] [Google Scholar]
- 8.Kachmar JR. Fundamentals of Clinical Chemistry, NW. Tietz. Philadelphia: Editor Sounders; 1976. Enzymes; pp. 674–674. [Google Scholar]
- 9.Sacks HJ, Lanchantin GF. An elevation of serum transaminases in jaundice states. Am J Clin Path. 1960;33:97–108. doi: 10.1093/ajcp/33.2.97. [DOI] [PubMed] [Google Scholar]
- 10.Elliot BA, Wilkinson JH. Serum “α-hydroxybutyric dehydrogenase” in myocardial infarction and in liver disease. Lancet. 1961;1:698–99. doi: 10.1016/S0140-6736(61)91724-X. [DOI] [PubMed] [Google Scholar]
- 11.Ebashi S, Toyokura Y, Momoi H, Sugita H. High creatine phosphokinase activity of sera of progressive muscular dystrophy. J Biochem (Japan) 1959;46:103–05. [Google Scholar]
- 12.Doran GR, Wilkinson JH. The origin of the elevated activities of creatine kinase and other enzymes in the sera of patients with myxedema. Clin Chim Acta. 1975;62:203–07. doi: 10.1016/0009-8981(75)90229-6. [DOI] [PubMed] [Google Scholar]
- 13.Szigmond EK, Starkweather WH, Duboff GS, Flynn KA. Elevated Serum Creatine Phosphokinase activity in a family with malignant hyperpyrexia. Anesth Analg. 1972;51:827–827. [PubMed] [Google Scholar]
- 14.LaFair JS, Myerson RM. Alcoholic myopathy. Arch Intern Med. 1968;122:417–19. doi: 10.1001/archinte.122.5.417. [DOI] [PubMed] [Google Scholar]
- 15.Dubo H, Park DC, Pennigton R, Jt Kalbag RM, Walton JN. Serum creatine kinase in cases of stroke, head injury and meningitis. Lancet. 1967;2:743–48. doi: 10.1016/S0140-6736(67)91946-0. [DOI] [PubMed] [Google Scholar]
- 16.Vassella F, Richterich R, Rossi E. The diagnostic value of serum creatine kinase in neuromuscular and muscular disease. Paediatrics. 1965;35:322–30. [PubMed] [Google Scholar]
- 17.Lee TH, Goldman L. Serum enzymes assay in the diagnosis of acute myocardial infarction. Recommendation based on a quantitative analysis. Ann Intern Med. 1986;105:221–33. doi: 10.7326/0003-4819-105-2-221. [DOI] [PubMed] [Google Scholar]
- 18.Seckinger DL, Vazquez DA, Rosenthal PK, Mendizabal RC. Cardiac isoenzyme methodology and the diagnosis of acute myocardial infarction. Am J Clin Pathol. 1983;80:164–69. doi: 10.1093/ajcp/80.2.164. [DOI] [PubMed] [Google Scholar]
- 19.Roberts R. Enzymatic diagnosis of acute myocardial infarction. Chest. 1988;93:3S–6S. doi: 10.1378/chest.93.1.3S. [DOI] [PubMed] [Google Scholar]
- 20.Collison PO, Rosalki SB, Kuwana T, et al. Early diagnosis of acute myocardial infarction by CK-MB mass measurements. Ann Clin Biochem. 1992;29:43–47. doi: 10.1177/000456329202900105. [DOI] [PubMed] [Google Scholar]
- 21.Lott JA, Heinz JW, Reger KA. Time changes of creatine kinase and creatine kinase MB isoenzyme versus discrimination values in the diagnosis of acute myocardial infarction: what is the optimal method for displaying the data? Eur J Clin Chem Biochem. 1995;33:491–96. doi: 10.1515/cclm.1995.33.8.491. [DOI] [PubMed] [Google Scholar]
- 22.Panteghini M. Diagnostic application of CK-MB mas determination. Clin Chim Acta. 1998;272:23–31. doi: 10.1016/S0009-8981(97)00249-0. [DOI] [PubMed] [Google Scholar]
- 23.Ravkilde J, Hansen AB, Horder M, Jorgensen PJ, Thygesen K. Risk stratification in suspected acute myocardial infarction based on a sensitive immunoassay for creatine kinase isoenzyme MB. Cardiology. 1992;80:143–51. doi: 10.1159/000174992. [DOI] [PubMed] [Google Scholar]
- 24.Grande P, Granborg J, Clemmensen P, Sevilla DC, Wagner NB, Wagner GS. Indices of reperfusion in patients with acute myocardial infarction using characteristics of the CK-MB time activity curve. Am Heart J. 1991;122:400–08. doi: 10.1016/0002-8703(91)90992-Q. [DOI] [PubMed] [Google Scholar]
- 25.Nageh T, Sherwood RA, Harris BM, Byrne JA, Thomas MR. Cardiac troponin T and I and creatine kinase—MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol. 2003;92:285–93. doi: 10.1016/S0167-5273(03)00105-0. [DOI] [PubMed] [Google Scholar]
- 26.Allaf M, Chapelle JP, Allaf E, et al. Differentiating muscle damage from myocardial injury by means of the serum creatine kinase (CK) isoenzyme MB mass measurement/total CK activity ratio. Clin Chem. 1986;32:291–95. [PubMed] [Google Scholar]
- 27.Thrompson WG, Mahr RG, Yohannan WS, Pincus MR. Use of creatine kinase MB isoenzyme for diagnosing myocardial infarction when total creatine kinase activity is high. Clin Chem. 1988;34:2208–10. [PubMed] [Google Scholar]
- 28.Keffer JH. Myocardial markers of injury-evolution and insights. Am J Clin Pathol. 1996;105:305–20. doi: 10.1093/ajcp/105.3.305. [DOI] [PubMed] [Google Scholar]
- 29.Arenas J, Diaz V, Liras G, et al. Activities of creatine kinase and its isoenzymes in serum in verious skeletal muscle disorders. Clin Chem. 1988;34:2460–62. [PubMed] [Google Scholar]
- 30.Puleo PR, Guadagno PA, Roberts R, et al. Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase—MB. Circulation. 1990;82:759–64. doi: 10.1161/01.cir.82.3.759. [DOI] [PubMed] [Google Scholar]
- 31.Puleo PR, Meyer D, Wathen C, et al. Use of a rapid assay of subforms of creatine kinase MB to diagnose or rule out acute myocardial infarction. N Engl J Med. 1994;331:561–66. doi: 10.1056/NEJM199409013310901. [DOI] [PubMed] [Google Scholar]
- 32.Panteghini M. Serum isoforms of creatine kinase isoenzymes. Clin Biochem. 1988;21:211–18. doi: 10.1016/S0009-9120(88)80003-1. [DOI] [PubMed] [Google Scholar]
- 33.Wu ABW. Creatine kinase isoforms in ischaemic heart disease. Clin Chem. 1989;35:7–13. [PubMed] [Google Scholar]
- 34.Prager NP, Suzuki T, Jaffe AS, Sobel BE, Abendschein DR. The nature and time course of generation of the isoforms of MB creatine kinase in vivo. J Am Coll Cardiol. 1992;20:414–19. doi: 10.1016/0735-1097(92)90111-Y. [DOI] [PubMed] [Google Scholar]
- 35.Pentilla K, Koukkunen H, Halinen M, Rantanen T, Pyorala K, Punnone PI. Myoglobin, creatine kinase MB isoforms and creatine kinase MB mass in early diagnosis of myocardial infarction in patients with acute chest pain. Clin Biochem. 2002;35:647–53. doi: 10.1016/S0009-9120(02)00385-5. [DOI] [PubMed] [Google Scholar]
- 36.Christenson RH, Azzazy HM. Biochemical markers of the acute coronary syndromes. Clin Chem. 1998;44:1855–1864. [PubMed] [Google Scholar]
- 37.Gilkeson G, Stone MJ, Waterman M, Ting R, Gomez-Sanchez CE, Hull A, Willerson JT. Detection of myoglobin by radioimmunoassay in human sera: Its usefulness and limitations as an emergency room screening test for acute myocardial infarction. Am Heart J. 1978;95:70–75. doi: 10.1016/0002-8703(78)90398-8. [DOI] [PubMed] [Google Scholar]
- 38.deWinter, Koster R, Sturk A, Sanders G. Value of myoglobin, troponin T and CKMB m in ruling out an acute myocardial infarction in the emergency room. Circulation. 1995;92:3401–07. doi: 10.1161/01.cir.92.12.3401. [DOI] [PubMed] [Google Scholar]
- 39.Hetland O, Dickstein K. Cardiac markers in the early h of acute myocardial infarction: clinical performance of creatine kinase, creatine kinase MB isoenzyme (activity and mass concentration), creatine kinase MM and MB isoform ratios, myoglobin and cardiac troponin T. Scand J Clin Lab Invest. 1996;56:701–13. doi: 10.3109/00365519609088817. [DOI] [PubMed] [Google Scholar]
- 40.Jernberg T, Lindahl B, James S, Ranquist G, Wallentin L. Comparison between strategies using creatine kinase—MB (mass), myoglobin and troponin T in the early detection or exclusion of acute myocardial infarction in patients with chest pain and a non-diagnostic electrocardiogramm. Am J Cardiol. 2000;86:1367–71. doi: 10.1016/S0002-9149(00)01245-5. [DOI] [PubMed] [Google Scholar]
- 41.Mair J, Morandell D, Genser N, Lechleitner P, Dienstl F, Puschendorf B. Equivalent early sensitivities of myoglobin, creatine kinase MB-mass, creatine kinase isoform ratios and cardiac tropinim I and T for acute myocardical infarction. Clin Chem. 1995;41:1266–72. [PubMed] [Google Scholar]
- 42.Zimmerman J, Fromm R, Meyer D. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation. 1999;99:1671–77. doi: 10.1161/01.cir.99.13.1671. [DOI] [PubMed] [Google Scholar]
- 43.Pantighini M. Biochemical markers in acute coronary syndromes. Lab Medica International. 2003;20(6):6–7. [Google Scholar]
- 44.Katus HA, Remppis A, Scheffold T, Dienderich KW, Kubler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and non-reperfused myocardial infarction. Am J Cardial. 1991;67:1360–67. doi: 10.1016/0002-9149(91)90466-X. [DOI] [PubMed] [Google Scholar]
- 45.Adams JE, Schechtman KB, Landt Y, et al. Comparable detection of AMI by CK-MB isoenzyme and cardiac tropnin I. Clin Chem. 1994;40:1291–95. [PubMed] [Google Scholar]
- 46.Tymchak WJ, Armstrong PW. Spectrum of ischaemic heart disease and the role of biochemical markers. Clin Lab Med. 1997;17:701–25. [PubMed] [Google Scholar]
- 47.Rottbauer W, Greten T, Muller-Bard off M, et al. Troponin T:A diagnostic marker for myocardial infarction and minor cell damage. Eur Heart J. 1996;17(Suppl. F):3–8. doi: 10.1093/eurheartj/17.suppl_f.3. [DOI] [PubMed] [Google Scholar]
- 48.Hamm CW. Cardiac-specific troponins in acute coronary syndromes in Braunwald, E (ed.) Heart Disease: A text-book of cardiovascular Medicine. 5th ed 1997 Update vol. 3. p 1–10.
- 49.Ravikilde J, Horder M, Gerhardt W, Ljungdahl J, Petterson T, Tryding N, et al. Diagnostic performance and prognostie value of serum Troponin T in suspected acute myocardial infarction. Send J Clin Lab Invest. 1993;53:677–85. doi: 10.3109/00365519309092571. [DOI] [PubMed] [Google Scholar]
- 50.Wu AHB, Feng YJ, Controls JH. Prognostic value of cardiac troponin I in chest pain patients. Clin Chem. 1996;42:651–52. [PubMed] [Google Scholar]
- 51.Galvani M, Ottari F, Ferrini D, Ladenson JH, Destro A, Baccos D, et al. Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation. 1997;95:2053–59. doi: 10.1161/01.cir.95.8.2053. [DOI] [PubMed] [Google Scholar]
- 52.Ohman EM, Armstrong PW, Christenson RH, Granger CB, Katus HA, Hamm CW, et al. Cardiac troponin T levels for risk stratification in acute ischaemia. N Engl J Med. 1996;335:133–41. doi: 10.1056/NEJM199610313351801. [DOI] [PubMed] [Google Scholar]
- 53.Olatidoye AG, Wu AH, Feng Y, Waters D. Prognostic role of Troponin T versus Troponin I in unstable Agnina Pectoris for cardiac events with meta-analysis comparing Published studies. Am J Cardiol. 1998;81:1405–10. doi: 10.1016/S0002-9149(98)00200-8. [DOI] [PubMed] [Google Scholar]
- 54.Heidenreich PA, Allogiamento T, Melsop K, McDonald KM, Alan SGo, Heatky MA. The prognostic valve of troponin in patients with non-ST elevation acute coronary syndromes: a meta analysis. J Am Coll Cardiol. 2001;38:478–85. doi: 10.1016/S0735-1097(01)01388-2. [DOI] [PubMed] [Google Scholar]
- 55.Rao SV, Ohman EM, Granger CB, et al. Prognostic value of isolated troponin elevations across the spectrum of chest pain syndromes. Am J Cardiol. 2003;91:936–40. doi: 10.1016/S0002-9149(03)00107-3. [DOI] [PubMed] [Google Scholar]
- 56.Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac Troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Path. 1996;105:6–10. doi: 10.1093/ajcp/105.1.6. [DOI] [PubMed] [Google Scholar]
- 57.Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Waldes R. National Academy of Clinical Biochemistry standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery disease. Clin Chem. 1999;45:1104–21. [PubMed] [Google Scholar]
- 58.Bodor GS, Porterfield D, Voss E, et al. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem. 1995;41:148–148. [PubMed] [Google Scholar]
- 59.Ikeda J, Zenimoto M, Kita M, Mori M. Usefulness of cardiac troponin I in patients with acute myocardial infarction. Rinsho Byori. 2002;50:982–86. [PubMed] [Google Scholar]
- 60.Sciries BM, Morrow DA. Troponins in acute coronary syndromes. Prog Cardiovasc Dis. 2004;47:177–88. doi: 10.1016/j.pcad.2004.07.004. [DOI] [PubMed] [Google Scholar]
- 61.Vaananen HK, Syrjala H, Rahkila P, et al. Serum carbonic anhydrase III and myoglobin concentration in acute myocardial infarction. Clin Chem. 1990;36:635–38. [PubMed] [Google Scholar]
- 62.Brogan GX, Vuori J, Friedman S, Cuskey CF, Thode HC, Vaananen HK, Colling DS, Bock JL. Improved specificity of myoglobin plus carbonic anhydrase assary versus that of creatine kinase-MB for early diagnosis of acute myocardial infarction. Am Emerg Med. 1996;28:245–46. doi: 10.1016/S0196-0644(96)70072-0. [DOI] [PubMed] [Google Scholar]
- 63.Beuerle JR, Azzazy HM, Styba G, Duh SH, Christenson RH. Characteristics of myoglobin, Carbonic anhydrase III and the myoglobin/arbonic anhydrase III ratio in trauma, exercise and myocardial infarction patients. Clin Chim Acta. 2000;294:115–28. doi: 10.1016/S0009-8981(99)00261-2. [DOI] [PubMed] [Google Scholar]
- 64.Vuotikka P, Uusimaa P, Niemela M, Vaananen K, Vuori J, Peuhkurinen K. Serum myoglobin/Carbonic anhydrase III ration as a marker of reperfusion after myocardial infarction. Int J Cardiol. 2003;91:137–44. doi: 10.1016/S0167-5273(03)00018-4. [DOI] [PubMed] [Google Scholar]
- 65.Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Ghycogen phophorylase ischaemic injury and infarction. Mol Cell Biochem. 1996;160–161:289–95. doi: 10.1007/BF00240061. [DOI] [PubMed] [Google Scholar]
- 66.Mair J. Glycogen phophorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clin Chem Acta. 1998;272:79–86. doi: 10.1016/S0009-8981(97)00254-4. [DOI] [PubMed] [Google Scholar]
- 67.Mair J, Puschendorf B, Smidt J, Lechleitner P, Diestl F, Noll F, et al. Early release of glycogen phosphorylase in patients with unstable angina and transient ST-T alteration. Br Heart J. 1994;72:125–27. doi: 10.1136/hrt.72.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Mair P, Mair J, Krause EG, Balogh D, Puschendorf B, Rabitzsch G. Ghycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur J Clin Chem Biochem. 1994;32:543–47. doi: 10.1515/cclm.1994.32.7.543. [DOI] [PubMed] [Google Scholar]
- 69.Wu AH. Analytical and clinical evaluation of new diagnostic tests for myocardial damage. Clin Chem Acta. 1998;272:11–21. doi: 10.1016/S0009-8981(97)00248-9. [DOI] [PubMed] [Google Scholar]
- 70.Kleine AH, Glatz JF, Nieuwenhoven FA, Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infaction in man. Mol Cell Biochem. 1992;116:155–62. doi: 10.1007/BF01270583. [DOI] [PubMed] [Google Scholar]
- 71.Ishii J, Wang JH, Naruse H, Taga S, Kinoshita M, Kurokawa H, Iwase M, Kondo T, Nomura M, Nagamura Y, Watanabe Y, Hishida H, Tanaka T, Kawamura K. Serum concentrations of myoglobin Vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem. 1997;43:1372–78. [PubMed] [Google Scholar]
- 72.Okamoto F, Sohmiya K, Ohkaru Y, Kawamura K, Asayma K, Kimura H, Nishimura S, Ishii H, Sunahara N, Tanaka T. Human heart-type cytoplasmic fatty acid binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in Comparison with myoglobin and creatine Kinase isoenzyme MB. Clin Chem Lab Med. 2000;38:231–38. doi: 10.1515/CCLM.2000.034. [DOI] [PubMed] [Google Scholar]
- 73.Chan CP, Sanderson JE, Glatz JF, Chang WS, Hempel A, Renneberg R. A superior early myocardial infarction marker Human heart-type fatty acid binding protein. Z Kardiol. 2004;93:388–97. doi: 10.1007/s00392-004-0080-6. [DOI] [PubMed] [Google Scholar]
- 74.Seino Y, Tomita Y, Takano T, Ohbayashi K. Office cardiologists cooperative study on whole blood rapid panel tests in patients with suspicious acute myocardial infarction: Comparison between heart-type fatty acid binding protein and Troponin T tests. Circ J. 2004;68:144–48. doi: 10.1253/circj.68.144. [DOI] [PubMed] [Google Scholar]
- 75.Hasegawa T, Yoshimura N, Oka S, Ootaki Y, Toyoda Y, Yamaguchi M. Evaluation of heart fatty acid-binding protein as rapid indicator of assessment of myocardial damage in pediatric cardiac surgery. Thorac Cardiovasc Surg. 2004;127:1697–02. doi: 10.1016/j.jtcvs.2004.02.006. [DOI] [PubMed] [Google Scholar]
- 76.Isobe M, Nagai R, Ueda S, et al. Quantitative relationship between left ventricular function and serum cardiac myosin light chain I level after coronary reperfusion in patients with acute myocardial infarction. Circulation. 1987;76:1251–61. doi: 10.1161/01.cir.76.6.1251. [DOI] [PubMed] [Google Scholar]
- 77.Panteghini M. Cardiac myosin light chains. Lab Med. 1992;23:318–322. [Google Scholar]
- 78.Usui A, Kato K, Sara H, Minaguchi K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100 a O protein in serum during acute myocardial infarction. Clin Chem. 1990;36:639–41. [PubMed] [Google Scholar]
- 79.Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y. Measurement of plasma annexin V by ELISA in early detection of acute myocardial infarction. Chin Chim Acta. 1996;251:65–80. doi: 10.1016/0009-8981(96)06294-8. [DOI] [PubMed] [Google Scholar]
