Abstract
Damaging effects of reactive oxygen species on living systems are well documented. They include oxidative attack on vital cell constituents. Chronic ethanol administration is able to induce an oxidative stress in the central nervous system. In the present study, 16–18 week-old male albino rats of Wistar strain were exposed to different concentration of ethanol for 4 weeks. This exposure showed profound effect on body weight. Ascorbic acid level; and activities of alkaline phosphatase and aspartate transaminase in the brain are dependent on the concentration of ethanol exposure. Chronic ethanol ingestion elicits statistically significant increase in thiobarbituric acid reactive substances level and decrease in gluatathione level in the brain. It reduces superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in a dose dependent manner. However, histological examination could not reveal any pathophysiological changes. Therefore, we conclude that biochemical alterations and oxidative stress related parameters respond early in alcoholism than the histopathological changes in brain.
Key words: Ethanol, Brain, Oxidative stress, Glutathione, Transferase, Phosphatase
Full Text
The Full Text of this article is available as a PDF (157.4 KB).
References
- 1.Calabrese V, Scapagnini G, Latteri S, Colombrita C, Rayagna A, Catalano C, Pennisi G, Calvani M, Butterfield DA. Longterm ethanol administration enhances age-dependent modulation of redox state in different brain regions in the rat: protection by acetyl carnitine. Int J Tissue React. 2002;24(3):97–104. [PubMed] [Google Scholar]
- 2.Diamond I, Gordon AS. Cellular and molecular neuroscience of alcoholism. Physiol Rev. 1997;77:1–20. doi: 10.1152/physrev.1997.77.1.1. [DOI] [PubMed] [Google Scholar]
- 3.Gupta YK, Gupta M, Kohli K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Ind J Physiol Pharmacol. 2003;47(4):373–86. [PubMed] [Google Scholar]
- 4.Skaper SD, Floreani M, Ceccon M, Facci L, Giusti P. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin. Ann NY Acad Sci. 1999;890:107–18. doi: 10.1111/j.1749-6632.1999.tb07985.x. [DOI] [PubMed] [Google Scholar]
- 5.Gilman SC, Bonner MJ, Pellmar TC. Effect of oxidative stress on excitatory amino acid release by cerebral cortical synaptosomes. Free Radic Biol Med. 1993;15(6):671–5. doi: 10.1016/0891-5849(93)90172-Q. [DOI] [PubMed] [Google Scholar]
- 6.Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev. 2002;54(2):271–84. doi: 10.1124/pr.54.2.271. [DOI] [PubMed] [Google Scholar]
- 7.Gonthier B, Signorini-Allibe N, Soubeyran A, Eysseric H, Lamarche F, Barret L. Ethanol can modify the effects of certain free radical-generating systems on astrocytes. Alcohol Clin Exp Res. 2004;28(4):526–34. doi: 10.1097/01.ALC.0000122271.32522.A7. [DOI] [PubMed] [Google Scholar]
- 8.Das SK, Vasude DM. Effect of lecithin in the treatment of ethanol mediated free radical induced hepatotoxicity. Ind J Clin Biochem. 2006;21(1):62–69. doi: 10.1007/BF02913068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Lowry OH, Rosenbourgh NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;193:265–75. [PubMed] [Google Scholar]
- 10.Linhardt K, Walter K. Phosphatase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. NY: Academic Press; 1963. pp. 799–799. [Google Scholar]
- 11.Bergmeyer HU, Bernt E. Glutamate oxaloacetate transaminase; Glutamate pyruvate transaminase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. NY: Academic Press Inc; 1963. pp. 837–53. [Google Scholar]
- 12.Roe JH, Kuether CA. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of dehydro ascorbic acid. J. Biol Chem. 1943;147:399–401. [Google Scholar]
- 13.Ellman GL. The sulphydryl groups. Arch. Biochem. Biophys. 1959;32:70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- 14.Sinnhuber RO, Yu TC. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–30. [Google Scholar]
- 15.Goldberg MD, Spooner JR. Glutathione reductase. In: Bergmayer HU, Bergmayer J, Grabi M, editors. Methods of Enzymatic Analysis. 3rd ed. Florida: Academic Press Inc.; 1983. pp. 258–65. [Google Scholar]
- 16.Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9. [PubMed] [Google Scholar]
- 17.Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J Lab Clin Med. 1967;70:158–9. [PubMed] [Google Scholar]
- 18.Marklund S, Marklund G. Involvement of superoxide radical in the auto oxidation, pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- 19.Das SK, Vasudevan DM. Effect of ethanol on liver antioxidant defense systems: a dose dependent study. Ind J Clin Biochem. 2005;20(1):79–83. doi: 10.1007/BF02893047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Harper C, Matsumoto I. Ethanol and brain damage. Curr Opin pharmacol. 2005;5:73–8. doi: 10.1016/j.coph.2004.06.011. [DOI] [PubMed] [Google Scholar]
- 21.Kril JJ, Halliday GM, Svoboda MD, Cartwright H. The cerebral cortex is damaged in chronic alcoholics. Neuroscience. 1997;79:983–98. doi: 10.1016/S0306-4522(97)00083-3. [DOI] [PubMed] [Google Scholar]
- 22.Cohen S. Phosphatases. In: Lajtha A, editor. Handbook of. Neurochemistry, NY: Plenum Press; 1970. pp. 87–131. [Google Scholar]
- 23.Sedman G L, Austin L, Langford CJ. Protein turnover in brain during the development of alcohol dependence. Neurosci. Lett. 1982;28:93–9. doi: 10.1016/0304-3940(82)90214-2. [DOI] [PubMed] [Google Scholar]
- 24.Jarlstedt J. Effect of alcohol and diet on3H leucine incorporation into brain and liver protein. I. Acute intoxication and vitamin deficiency in rats. J Stud Alcohol. 1976;37:1178–87. doi: 10.15288/jsa.1976.37.1178. [DOI] [PubMed] [Google Scholar]
- 25.Dasgupta S, Ghosh S. Nicotine induced alterations in brain acid and alkaline phosphatase activities. Ind J Physiol Allied Sci. 1993;47:200–6. [Google Scholar]
- 26.Anderson PJ, Song SK. Acid phosphatase in the nervous system. J Neuropathol Neurol. 1962;21:263–83. doi: 10.1097/00005072-196204000-00008. [DOI] [PubMed] [Google Scholar]
- 27.Matcovis B, Varga SI, Szaluo L, Witsas H. The effect of diabetes on the activities of the peroxide metabolic enzymes. Hor Metb Res. 1982;14:77–9. doi: 10.1055/s-2007-1018928. [DOI] [PubMed] [Google Scholar]
- 28.Svensson L, Wu C, Johannessen K, Engel JA. Effect of ethanol on ascorbate release in the nucleus accumbens and striatum of freely moving rats. Alcohol. 1992;9(6):535–40. doi: 10.1016/0741-8329(92)90093-P. [DOI] [PubMed] [Google Scholar]
- 29.Carney JM, Strake-Reed PE, Oliver CN, Landum RW, Chang MS, Wu JF, Floyd RA. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity and loss in temporal and spatial memory by chronic administration of the spin trapping compound N-tert-buty-alfa-pheynitrone. PNAS. 1991;88:3633–6. doi: 10.1073/pnas.88.9.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Nistico G, Cirilol HR, Fiskin K, Iannone M, Martino A, Rotilio G. NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats. Free Radic Biol Med. 1992;12:177–81. doi: 10.1016/0891-5849(92)90024-B. [DOI] [PubMed] [Google Scholar]
- 31.Scapagnini G, Ravagna A, Bella R, Colombrita C, Pennisi G, Calvani M, Alkon D, Calabrese V. Long-term ethanol administration enhances age-dependent modulation of redox state in brain and peripheral organs of rat: protection by acetyl carnitine. Int J Tissue React. 2002;24(3):89–96. [PubMed] [Google Scholar]
- 32.Hemachand T, Gopalakrishnan B, Salunke DM, Totey SM, Shaha C. Sperm plasma-membrane-associated, glutathione S-transferases as gamete recognition molecules. J Cell Sci. 2002;115:2053–65. doi: 10.1242/jcs.115.10.2053. [DOI] [PubMed] [Google Scholar]
- 33.Davenport CJ, Ali SF, Miller FJ, Lipe GW, Morgan KT, Bonnefoi MS. Effect of methyl bromide on regional brain glutathione, glutathione-S-transferases, monoamines, and amino acids in F344 rats. Toxicol Appl Pharmacol. 1992;112(1):120–7. doi: 10.1016/0041-008X(92)90287-3. [DOI] [PubMed] [Google Scholar]
- 34.Yu BP. Cellular defense against damage from reactive oxygen species. Physiol Rev. 1994;74:139–62. doi: 10.1152/physrev.1994.74.1.139. [DOI] [PubMed] [Google Scholar]
- 35.Aydin S, Ozaras R, Uzun H, Belce A, Uslu E, Tahan V, Altug T, Dumen E, Senturk H. N-acetylcysteine reduced the effect of ethanol on antioxidant system in rat plasma and brain tissue. Tohoku J Exp Med. 2002;198(2):71–7. doi: 10.1620/tjem.198.71. [DOI] [PubMed] [Google Scholar]
