Skip to main content
Genes & Nutrition logoLink to Genes & Nutrition
. 2006 Jun;1(2):75–83. doi: 10.1007/BF02829949

Evolutionary conservation of metabolism explains howDrosophila nutrigenomics can help us understand human nutrigenomics

Douglas M Ruden 1,, Xiangyi Lu 1
PMCID: PMC3454681  PMID: 18850201

Abstract

While large populations in the third world are enduring famine, much of the developed world is undergoing an obesity epidemic. In addition to reflecting an unbalanced distribution of food, the “epidemic of overabundance” is ironically leading to a decrease in the health and longevity of the obese and improperly nourished in the first world. International consortia, such as the European Nutrigenomics Organization (NuGO), are increasing our knowledge of nutrientgene interactions and the effects of diet and obesity on human health. In this review, we summarize both previous and ongoing nutrigenomics studies in Drosophila and we explain how these studies can be used to provide insights into molecular mechanisms underlying nutrigenomics in humans. We will discuss how quantitative trait locus (QTL) experiments have identified genes that affect triglyceride levels in Drosophila, and how microarray analyses show that hundreds of genes have altered gene expression under different dietary conditions. Finally, we will discuss ongoing combined microarray-QTL studies, termed “genetical genomics,” that promise to identify “master modulatory loci” that regulate global responses of potentially hundreds of genes under different dietary conditions. When “master modulatory loci” are identified in Drosophila, then experiments in mammalian models can be used to determine the relevance of these genes to human nutrition and health.

Key Words: Drosophila, Genetical Genomics, Metabolism, Nutrigenomics

Full Text

The Full Text of this article is available as a PDF (517.6 KB).

References

  1. Arrese E. L., Canavoso L. E., Jouni Z. E., Pennington J. E., Tsuchida K., Wells M. A. Lipid storage and mobilization in insects: current status and future directions. Insect Biochemistry & Molecular Biology. 2001;31:7–17. doi: 10.1016/S0965-1748(00)00102-8. [DOI] [PubMed] [Google Scholar]
  2. Bauer M., Hamm A., Pankratz M. J. Linking nutrition to genomics. Biological Chemistry. 2004;385:593–596. doi: 10.1515/BC.2004.073. [DOI] [PubMed] [Google Scholar]
  3. Bier E. Drosophila, the golden bug, emerges as a tool for human genetics. Nature Reviews Genetics. 2005;6:9–23. doi: 10.1038/nrg1503. [DOI] [PubMed] [Google Scholar]
  4. Bystrykh L., Weersing E., Dontje B., Sutton S., Pletcher M.T., Wiltshire T., Su A. L, Vellenga E., Wang J., Manly K. E, et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. [see comment] Nature Genetics. 2005;37:225–232. doi: 10.1038/ng1497. [DOI] [PubMed] [Google Scholar]
  5. Canavoso L. E., Bertello L. E., Lederkremer R. M., Rubiolo E. R. Effect of fasting on the composition of the fat body lipid of Dipetalogaster maximus, Triatoma infestans and Panstrongylus megistus (Hemiptera:Reduviidae) Journal of Comparative Physiology — B, Biochemical, Systemic, & Environmental Physiology. 1998;168:549–554. doi: 10.1007/s003600050176. [DOI] [PubMed] [Google Scholar]
  6. Canavoso L. E., Jouni Z. E., Karnas K. J., Pennington J. E., Wells M. A. Fat metabolism in insects. Annual Review of Nutrition. 2001;21:23–46. doi: 10.1146/annurev.nutr.21.1.23. [DOI] [PubMed] [Google Scholar]
  7. Canavoso L. E., Wells M. A. Metabolic pathways for diacylglycerol biosynthesis and release in the midgut of larval Manduca sexta. Insect Biochemistry & Molecular Biology. 2000;30:1173–1180. doi: 10.1016/S0965-1748(00)00094-1. [DOI] [PubMed] [Google Scholar]
  8. Carlborg O., Koning D. J., Manly K. F., Chesler E., Williams R. W, Haley C. S. Methodological aspects of the genetic dissection of gene expression. Bioinformatics. 2005;21:2383–2393. doi: 10.1093/bioinformatics/bti241. [DOI] [PubMed] [Google Scholar]
  9. Chadwick R. Nutrigenomics, individualism and public health. Proceedings of the Nutrition Society. 2004;63:161–166. doi: 10.1079/PNS2003329. [DOI] [PubMed] [Google Scholar]
  10. Cheung C. C, Martin I. C, Zenger K. R, Donald J. A., Thomson P. C, Moran C., Buckley M. F. Quantitative trait loci for steady-state platelet count in mice. Mammalian Genome. 2004;15:784–797. doi: 10.1007/s00335-004-2408-y. [DOI] [PubMed] [Google Scholar]
  11. Church G. M. Genomes for all. Scientific American. 2006;294:46–54. doi: 10.1038/scientificamerican0106-46. [DOI] [PubMed] [Google Scholar]
  12. Clark A. G., Keith L. E. Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics. 1988;119:595–607. doi: 10.1093/genetics/119.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Curtsinger J. W. Peeking under QTL peaks. Nature Genetics. 2003;34:358–359. doi: 10.1038/ng0803-358. [DOI] [PubMed] [Google Scholar]
  14. Koning D. J., Carlborg O., Haley C. S. The genetic dissection of immune response using gene-expression studies and genome mapping. Veterinary Immunology & Immunopathology. 2005;105:343–352. doi: 10.1016/j.vetimm.2005.02.007. [DOI] [PubMed] [Google Scholar]
  15. Koning D. J., Haley C. S. Genetical genomics in humans and model organisms. Trends in Genetics. 2005;21:377–381. doi: 10.1016/j.tig.2005.05.004. [DOI] [PubMed] [Google Scholar]
  16. Luca M., Roshina N. V., Geiger-Thornsberry G. L., Lyman R. E, Pasyukova E. G., Mackay T. F. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nature Genetics. 2003;34:429–433. doi: 10.1038/ng1218. [DOI] [PubMed] [Google Scholar]
  17. Luca M., Yi N., Allison D. B., Leips J., Ruden D. M. Mapping quantitative trait loci affecting variation in Drosophila triacylglycerol storage. Obesity Research. 2005;13:1–10. doi: 10.1038/oby.2005.196. [DOI] [PubMed] [Google Scholar]
  18. Devor M., Gilad A., Arbilly M., Yakir B., Raber P., Pisante A., Darvasi A. pain l: a neuropathic pain QTL on mouse chromosome 15 in a C3HxC58 backcross. Pain. 2005;116:289–293. doi: 10.1016/j.pain.2005.04.023. [DOI] [PubMed] [Google Scholar]
  19. Dobzhansky T. Nothing in biology makes sense except in the light of evolution. The American Biology Teacher. 1973;35:125–129. [Google Scholar]
  20. Dobzhansky T.G. Evolution, genetics, and man. New York: Wiley; 1955. [Google Scholar]
  21. Drazinic C. M., Ercan-Sencicek A. G., Gault L. M., Hisama F. M., Qumsiyeh M. B., Nowak N.J., Cubells J. F., State M. W. Rapid array-based genomic characterization of a subtle structural abnormality: a patient with psychosis and der(18)t(5;18)(p14.1;p11.23) American Journal of Medical Genetics Part A. 2005;134:282–289. doi: 10.1002/ajmg.a.30616. [DOI] [PubMed] [Google Scholar]
  22. Driver C. J. The effect of meal composition on the degree of satiation following a test meal and possible mechanisms involved. British Journal of Nutrition. 1988;60:441–449. doi: 10.1079/BJN19880116. [DOI] [PubMed] [Google Scholar]
  23. Du W., Cieplik M., Durstewitz G., Sarkar C. M., Kruschina M., Fries R., Ortigao F. R. Minisequencing on functionalised self-assembled monolayer as a simple approach for single nucleotide polymorphism analysis of cattle. Zeitschrift fur Naturforschung Section C Journal of Biosciences. 2003;58:413–420. doi: 10.1515/znc-2003-5-621. [DOI] [PubMed] [Google Scholar]
  24. Fenech M. The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis. 2005;20:255–269. doi: 10.1093/mutage/gei040. [DOI] [PubMed] [Google Scholar]
  25. Gillies P. J. Nutrigenomics: the Rubicon of molecular nutrition. Journal of the American Dietetic Association. 2003;103:S50–55. doi: 10.1016/j.jada.2003.09.037. [DOI] [PubMed] [Google Scholar]
  26. Guo J., Zhao F., Qiu L., Li X. [Effect of multimi cronutrient on heat adaptation and its probable mechanism]. Wei Sheng Yen Chiu/ Journal of Hygiene Research. 2001;30:273–275. [PubMed] [Google Scholar]
  27. Haldane J. B. S. The biochemistry of genetics. London: Allen & Unwin; 1954. [Google Scholar]
  28. Helfand S. L., Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annual Review of Genetics. 2003;37:329–348. doi: 10.1146/annurev.genet.37.040103.095211. [DOI] [PubMed] [Google Scholar]
  29. Hribal M. L, Oriente F., Accili D. Mouse models of insulin resistance. American Journal of Physiology Endocrinology & Metabolism. 2002;282:E977–981. doi: 10.1152/ajpendo.00561.2001. [DOI] [PubMed] [Google Scholar]
  30. Jansen R. C, Nap J. P. Genetical genomics: the added value from segregation. Trends in Genetics. 2001;17:388–391. doi: 10.1016/S0168-9525(01)02310-1. [DOI] [PubMed] [Google Scholar]
  31. Junien C., Gallou C. Cancer nutrigenomics. World Review of Nutrition & Dietetics. 2004;93:210–269. doi: 10.1159/000081260. [DOI] [PubMed] [Google Scholar]
  32. Kaput J. The case for strategic international alliances to harness nutritional genomics for public and personal health. British Journal of Nutrition. 2005;94:623–632. doi: 10.1079/BJN20051585. [DOI] [PubMed] [Google Scholar]
  33. Kaput J., Rodriguez R. L. Nutritional genomics: the next frontier in the postgenomic era. Physiological Genomics. 2004;16:166–177. doi: 10.1152/physiolgenomics.00107.2003. [DOI] [PubMed] [Google Scholar]
  34. Kleeberger S. R. Genetic aspects of pulmonary responses to inhaled pollutants. Experimental & Toxicologic Pathology. 2005;57(1):147–153. doi: 10.1016/j.etp.2005.05.017. [DOI] [PubMed] [Google Scholar]
  35. Li H., Lu L., Manly K. E, Chesler E. J., Bao L., Wang J., Zhou M., Williams R. W, Cui Y. Inferring gene transcriptional modulatory relations: a genetical genomics approach. Human Molecular Genetics. 2005;14:1119–1125. doi: 10.1093/hmg/ddi124. [DOI] [PubMed] [Google Scholar]
  36. Mackay T. F. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends in Genetics. 1995;11:464–470. doi: 10.1016/S0168-9525(00)89154-4. [DOI] [PubMed] [Google Scholar]
  37. Mackay T. F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays. 1996;18:113–121. doi: 10.1002/bies.950180207. [DOI] [PubMed] [Google Scholar]
  38. Mackay T F. Quantitative trait loci in Drosophila. Nature Review Geriatrics. 2001;2:11–20. doi: 10.1038/35047544. [DOI] [PubMed] [Google Scholar]
  39. Mackay T. F. The nature of quantitative genetic variation for Drosophila longevity. Mechanism of Ageing & Development. 2002;123:95–104. doi: 10.1016/S0047-6374(01)00330-X. [DOI] [PubMed] [Google Scholar]
  40. Mackay T F., Fry J. D. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative traitloci. Genetics. 1996;144:671–688. doi: 10.1093/genetics/144.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mackay T. E, Fry J. D., Lyman R. E, Nuzhdin S. V. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics. 1994;136:937–951. doi: 10.1093/genetics/136.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mackay T E, Hackett J. B., Lyman R. E, Wayne M. L., Anholt R. R. Quantitative genetic variation of odorguided behavior in a natural population of Drosophila melanogaster. Genetics. 1996;144:727–735. doi: 10.1093/genetics/144.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mackay T. E, Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990;348:64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
  44. Mackay T F., Lyman R. F. Polygenic mutation in Drosophila melanogaster: genotype x environment interaction for spontaneous mutations affecting bristle number. Genetica. 1998;103:199–215. doi: 10.1023/A:1017041900138. [DOI] [PubMed] [Google Scholar]
  45. Marteau P., Lepage P., Mangin L., Suau A., Dore J., Pochart P., Seksik P. Review article: gut flora and inflammatory bowel disease. Alimentary Pharmacology & Therapeutics. 2004;20(4):18–23. doi: 10.1111/j.1365-2036.2004.02062.x. [DOI] [PubMed] [Google Scholar]
  46. Masojc P., Milczarski P. Mapping QTLs for alpha-amylase activity in rye grain. Journal of Applied Genetics. 2005;46:115–123. [PubMed] [Google Scholar]
  47. Muller M., Kersten S. Nutrigenomics: goals and strategies. Nature Reviews Genetics. 2003;4:315–322. doi: 10.1038/nrg1047. [DOI] [PubMed] [Google Scholar]
  48. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proceedings of the national academy of Sciences USA. 1997;94:9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ommen B., Groten J. P. Nutrigenomics in efficacy and safety evaluation of food components. World Review of Nutrition & Dietetics. 2004;93:134–152. doi: 10.1159/000081256. [DOI] [PubMed] [Google Scholar]
  50. Ordovas J. M., Mooser V. Nutrigenomics and nutrigenetics. Current Opinion in Lipidology. 2004;15:101–108. doi: 10.1097/00041433-200404000-00002. [DOI] [PubMed] [Google Scholar]
  51. Page G. P., Ruden D. M. Combining high dimensional biological data to study complex diseases and quantitative traits Design, Analysis, and Interpretation of Results. Boca Raton, FL: Chapman & Hall/CRC; 2005. [Google Scholar]
  52. Parks A. L, Cook K. R., Belvin M., Dompe N. A., Fawcett R., Huppert K., Tan L. R., Winter C. G., Bogart K. P., Deal J. E. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genetics. 2004;36:288–292. doi: 10.1038/ng1312. [DOI] [PubMed] [Google Scholar]
  53. Parma D. H., Dill M., Slocum M. K. Realignment of the genetic map of the terminus of the rIIB cistron of bacteriophage T4. Genetics. 1979;92:711–720. doi: 10.1093/genetics/92.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Parracho H. M., Bingham M. O., Gibson G. R., McCartney A. L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology. 2005;54:987–991. doi: 10.1099/jmm.0.46101-0. [DOI] [PubMed] [Google Scholar]
  55. Partridge L., Piper M. D., Mair W. Dietary restriction in Drosophila. Mechanisms of Ageing & Development. 2005;126:938–950. doi: 10.1016/j.mad.2005.03.023. [DOI] [PubMed] [Google Scholar]
  56. Partridge L., Pletcher S. D., Mair W. Dietary restriction, mortality trajectories, risk and damage. Mechanisms of Ageing & Development. 2005;126:35–41. doi: 10.1016/j.mad.2004.09.017. [DOI] [PubMed] [Google Scholar]
  57. Pennacchio L. A. Insights from human/mouse genome comparisons. Mammalian Genome. 2003;14:429–436. doi: 10.1007/s00335-002-4001-1. [DOI] [PubMed] [Google Scholar]
  58. Peregrin T. The new frontier of nutrition science: nutrigenomics. Journal of the American Dietetic Association. 2001;101:1306–1306. doi: 10.1016/S0002-8223(01)00309-1. [DOI] [PubMed] [Google Scholar]
  59. Perez-Enciso M., Misztal I. Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics. 2004;20:2792–2798. doi: 10.1093/bioinformatics/bth331. [DOI] [PubMed] [Google Scholar]
  60. Reyes-Valdes M. H., Williams C. G. An entropybased measure of founder informativeness. Genetical Research. 2005;85:81–88. doi: 10.1017/S0016672305007354. [DOI] [PubMed] [Google Scholar]
  61. Rossmeisl M., Rim J. S., Koza R. A., Kozak L. P. Variation in type 2 diabetes—related traits in mouse strains susceptible to diet-induced obesity. Diabetes. 2003;52:1958–1966. doi: 10.2337/diabetes.52.8.1958. [DOI] [PubMed] [Google Scholar]
  62. Ruden, D. M., Cui, X., Loraine, A. E., Ye, J., Bynum, K., Kim, N. C, De Luca, M., Garfinkel, M. D., and Lu, X. (2006). Methods for Nutrigenomics and Longevity Studies in Drosophila:Effects of Diets High in Sucrose, Palmitic Acid, Soy, or Beef.Methods in Molecular Biology in press. [DOI] [PubMed]
  63. Ruden D. M., Luca M., Garfinkel M. D., Bynum K., Lu X. Drosophila nutrigenomics can provide clues to human gene-nutrient interactions. Ann Rev Nutritionl. 2005;25:21–24. doi: 10.1146/annurev.nutr.25.050304.092708. [DOI] [PubMed] [Google Scholar]
  64. Schmucker D., Clemens J. C, Shu H., Worby C. A., Xiao J., Muda M., Dixon J. E., Zipursky S. L. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101:671–684. doi: 10.1016/S0092-8674(00)80878-8. [DOI] [PubMed] [Google Scholar]
  65. Schmucker D., Flanagan J. G. Generation of recognition diversity in the nervous system. Neuron. 2004;44:219–222. doi: 10.1016/j.neuron.2004.10.004. [DOI] [PubMed] [Google Scholar]
  66. Tebbutt S. J., He J. Q., Burkett K. M., Ruan J., Opushnyev I. V., Tripp B. W., Zeznik J. A., Abara C. O., Nelson C. C, Walley K. R. Microarray genotyping resource to determine population stratification in genetic association studies of complex disease. Biotechniques. 2004;37:977–985. doi: 10.2144/04376RR02. [DOI] [PubMed] [Google Scholar]
  67. Thibault S. T., Singer M. A., Miyazaki W. Y., Milash B., Dompe N. A., Singh C. M., Buchholz R., Demsky M., Fawcett R., Francis-Lang H. L., et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. [see comment] Nature Genetics. 2004;36:283–287. doi: 10.1038/ng1314. [DOI] [PubMed] [Google Scholar]
  68. Tonisson N., Kurg A., Kaasik K., Lohmussaar E., Metspalu A. Unravelling genetic data by arrayed primer extension. Clinical Chemistry & Laboratory Medicine. 2000;38:165–170. doi: 10.1515/CCLM.2000.025. [DOI] [PubMed] [Google Scholar]
  69. Trayhurn P. Nutritional genomics — “Nutrigenomics”. British Journal of Nutrition. 2003;89:1–2. doi: 10.1079/BJN2003905. [DOI] [PubMed] [Google Scholar]
  70. Tsaih S.W., Lu L., Airey D. C, Williams R. W, Churchill G. A. Quantitative trait mapping in a diallel cross of recombinant inbred lines. Mammalian Genome. 2005;16:344–355. doi: 10.1007/s00335-004-2466-1. [DOI] [PubMed] [Google Scholar]
  71. Ommen B. Nutrigenomics: exploiting systems biology in the nutrition and health arenas. Nutrition. 2004;20:4–8. [PubMed] [Google Scholar]
  72. Ommen B., Stierum R. Nutrigenomics: exploiting systems biology in the nutrition and health arena. Current Opinion in Biotechnology. 2002;13:517–521. doi: 10.1016/S0958-1669(02)00349-X. [DOI] [PubMed] [Google Scholar]
  73. Watson F. L., Puttmann-Holgado R., Thomas F., Lamar D. L., Hughes M., Kondo M., Rebel V. I., Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects, [see comment] Science. 2005;309:1874–1878. doi: 10.1126/science.1116887. [DOI] [PubMed] [Google Scholar]
  74. Welton A. R., Chesler E. J., Sturkie C., Jackson A. U., Hirsch G. N., Spindler K. R. Identification of quantitative trait loci for susceptibility to mouse adenovirus type 1. Journal of Virology. 2005;79:11517–11522. doi: 10.1128/JVI.79.17.11517-11522.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Worby C. A., Simonson-Leff N., Clemens J. C, Kruger R. P., Muda M., Dixon J. E. The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. Journal of Biological Chemistry. 2001;276:41782–41789. doi: 10.1074/jbc.M107080200. [DOI] [PubMed] [Google Scholar]

Articles from Genes & Nutrition are provided here courtesy of BMC

RESOURCES