Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 1998 May;15(5):240–245. doi: 10.1023/A:1022528007564

Genetics of Human Sperm

Renée H Martin 1,2,
PMCID: PMC3454755  PMID: 9604754

Abstract

Purpose:Chromosome abnormalities in sperm were studied by fluorescence in situ hybridization to determine the frequency and distribution of abnormalities in normal men and the effect of donor age on the frequency of abnormalities. Studies of chemotherapy and infertility patients assessed any increased risk in these populations.

Methods:Multicolor fluorescence in situ hybridization was performed on the sperm samples to assess aneuploidy frequencies for chromosomes 1, 2, 4, 9, 12, 13, 15, 16, 18, 20, 21, X, and Y as well as “sex ratios” and frequencies of diploid sperm.

Results:Most chromosomes yielded disomy estimates of approximately 0.1%, whereas the frequencies for chromosome 21 and the sex chromosomes were significantly elevated. The only chromosome to show a significant paternal age effect was YY disomy. Chemotherapy patients did not have an increased risk of aneuploid sperm 2–13 years after treatment. Infertility patients had an increased risk of disomy for chromosome 1, 13, 21, and XY.

Conclusions:Multicolor fluorescence in situ hybridization analysis allows comparison of sperm from various populations of men and has demonstrated that infertile patients have a significant increase in the frequency of aneuploid sperm.

Keywords: aneuploidy, chromosome abnormality, fluorescence in situ hybridization, human sperm, infertility

Full Text

The Full Text of this article is available as a PDF (612.2 KB).

REFERENCES

  • 1.Martin R, Balkan W, Burns K, et al. The chromosome constitution of 1000 human spermatozoa. Hum Genet. 1983;63:305–309. doi: 10.1007/BF00274750. [DOI] [PubMed] [Google Scholar]
  • 2.Martin R, Rademaker A. The effect of age on the frequency of sperm chromosomal abnormalities in normal men. Am J Hum Genet. 1987;41:484–492. [PMC free article] [PubMed] [Google Scholar]
  • 3.Martin R, Rademaker A, Hildebrand K, et al. Variation in the frequency and type of sperm chromosomal abnormalities among normal men. Hum Genet. 1987;77:108–114. doi: 10.1007/BF00272374. [DOI] [PubMed] [Google Scholar]
  • 4.Martin R, Rademaker A. The relationship between sperm chromosomal abnormalities and sperm morphology in humans. Mutat Res. 1988;207:159–164. doi: 10.1016/0165-7992(88)90081-4. [DOI] [PubMed] [Google Scholar]
  • 5.Chernos J, Martin R. A cytogenetic investigation of the effects of cryopreservation on human sperm. Am J Hum Genet. 1989;45:766–777. [PMC free article] [PubMed] [Google Scholar]
  • 6.Martin R, Rademaker A. The frequency of aneuploidy for individual chromosomes in 6821 human sperm chromosome complements. Cytogenet Cell Genet. 1990;53:103–107. doi: 10.1159/000132905. [DOI] [PubMed] [Google Scholar]
  • 7.Martin R, Ko E, Rademaker A. The distribution of aneuploidy in human gametes: Comparison between human sperm and oocytes. Am J Med Genet. 1991;39:321–331. doi: 10.1002/ajmg.1320390315. [DOI] [PubMed] [Google Scholar]
  • 8.Martin R, Chernos J, Rademaker A. The effect of cryopreservation on the frequency of chromosomal abnormalities and sex ratio in human sperm. Mol Reprod Dev. 1991;30:159–163. doi: 10.1002/mrd.1080300213. [DOI] [PubMed] [Google Scholar]
  • 9.Martin R. Invited Editorial: Segregation analysis of translocations by the study of human sperm chromosome complements. Am J Hum Genet. 1989;44:461–463. [PMC free article] [PubMed] [Google Scholar]
  • 10.Martin R, Ko E, Hildebrand K. Analysis of sperm chromosome complements from a man heterozygous for a Robertsonian translocation, 45,XY,t(15q22q) Am J Med Genet. 1992;43:855–857. doi: 10.1002/ajmg.1320430520. [DOI] [PubMed] [Google Scholar]
  • 11.Martin R. Analysis of sperm chromosome complements from a man heterozygous for a pericentric inversion, inv (8)(p23q22) Cytogenet Cell Genet. 1993;62:199–202. doi: 10.1159/000133475. [DOI] [PubMed] [Google Scholar]
  • 12.Martin R, Chernos J, Lowry R, et al. Analysis of sperm chromosome complements from a man heterozygous for a pericentric inversion of chromosome 1. Hum Genet. 1994;93:135–138. doi: 10.1007/BF00210597. [DOI] [PubMed] [Google Scholar]
  • 13.Martin R, Spriggs E. Sperm chromosome complements in a man heterozygous for a reciprocal translocation 46.XY,t(9;13)(q21.1;q21.2) and a review of the literature. Clin Genet. 1995;47:42–46. doi: 10.1111/j.1399-0004.1995.tb03920.x. [DOI] [PubMed] [Google Scholar]
  • 14.Martin R, Rademaker A, Arthur K, et al. A prospective serial study of the effects of radiotherapy on semen parameters, hamster egg penetration rates and lymphocyte chromosome abnormalities. Infertility. 1985;8:97–112. [PubMed] [Google Scholar]
  • 15.Martin R, Hildebrand K, Yamamoto J, et al. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174:219–225. doi: 10.1016/0165-7992(86)90155-7. [DOI] [PubMed] [Google Scholar]
  • 16.Martin R, Rademaker A, Hildebrand K, et al. A comparison of chromosomal aberrations induced by in vivo radiotherapy in human sperm and lymphocytes. Mutat Res. 1989;226:21–30. doi: 10.1016/0165-7992(89)90088-2. [DOI] [PubMed] [Google Scholar]
  • 17.Martin R, Rademaker A, Leonard N. Analysis of chromosomal abnormalities in human sperm after chemotherapy by karyotyping and fluorescence in situ hybridization (FISH) Cancer Genet Cytogenet. 1995;80:29–32. doi: 10.1016/0165-4608(94)00162-5. [DOI] [PubMed] [Google Scholar]
  • 18.Wyrobek A, Alhborn T, Balhorn R, et al. Fluorescence in situ hybridization to Y chromosomes in decondensed human sperm nuclei. Mol Reprod Dev. 1990;27:200–208. doi: 10.1002/mrd.1080270304. [DOI] [PubMed] [Google Scholar]
  • 19.Coonen E, Pieters M, Dumoulin J, et al. Nonisotopic in situ hybridization as a method for nondisjunction studies in human spermatozoa. Mol Reprod Dev. 1991;28:18–22. doi: 10.1002/mrd.1080280104. [DOI] [PubMed] [Google Scholar]
  • 20.Guttenbach M, Schmid M. Determination of Y chromosome aneuploidy in human sperm nuclei by non-radioactive in situ hybridization. Am J Hum Genet. 1990;46:553–558. [PMC free article] [PubMed] [Google Scholar]
  • 21.Guttenbach M, Schmid M. Non-isotopic detection of chromosome 1 in human meiosis and demonstration of disomic sperm nuclei. Hum Genet. 1991;87:261–265. doi: 10.1007/BF00200901. [DOI] [PubMed] [Google Scholar]
  • 22.Han T, Webb G, Flaherty S, et al. Detection of chromosome 17-and X-bearing sperm in human spermatozoa using fluorescent in situ hybridization. Mol Reprod Dev. 1992;33:189–194. doi: 10.1002/mrd.1080330211. [DOI] [PubMed] [Google Scholar]
  • 23.Goldman A, Hulten M. Analysis of chiasma frequency and first meiotic segregation in a human male reciprocal translocation heterozygote, t(1;11)(p36.3;q13.1), using fluorescence in situ hybridisation. Cytogenet Cell Genet. 1993;63:16–23. doi: 10.1159/000133493. [DOI] [PubMed] [Google Scholar]
  • 24.Guttenbach M, Schakowski R, Schmid M. Incidence of chromosome 3, 7, 10, 11, 17 and X disomy in mature human sperm nuclei as determined by nonradiative in situ hybridization. Hum Genet. 1994;93:7–12. doi: 10.1007/BF00218904. [DOI] [PubMed] [Google Scholar]
  • 25.Guttenbach M, Schakowski R, Schmid M. Incidence of chromosome 18 disomy in human sperm nuclei as detected by nonisotopic in situ hybridization. Hum Genet. 1994;93:502–506. doi: 10.1007/BF00201667. [DOI] [PubMed] [Google Scholar]
  • 26.Han T, Ford J, Webb G, et al. Simultaneous detection of X-and Y-bearing human sperm by double FISH. Mol Reprod Dev. 1993;34:308–313. doi: 10.1002/mrd.1080340311. [DOI] [PubMed] [Google Scholar]
  • 27.Robbins W, Segraves R, Pinkel D, et al. Detection of aneuploid human sperm by fluorescence in situ hybridization: Evidence for a donor difference in frequency of sperm disomic for chromosomes J and Y. Am J Hum Genet. 1993;52:799–807. [PMC free article] [PubMed] [Google Scholar]
  • 28.Wyrobek A, Robbins W, Mehraein Y, et al. Detection of sex chromosomal aneuploidies X-X, Y-Y, and X-Y in human sperm using two-chromosome fluorescence in situ hybridization. Am J Med Genet. 1994;53:1–7. doi: 10.1002/ajmg.1320530102. [DOI] [PubMed] [Google Scholar]
  • 29.Holmes J, Martin R. Aneuploidy detection in human sperm nuclei using fluorescence in situ hybridization. Hum Genet. 1993;91:20–24. doi: 10.1007/BF00230216. [DOI] [PubMed] [Google Scholar]
  • 30.Martin R, Chan K, Ko E, et al. Detection of aneuploidy in human sperm by fluorescence in situ hybridization (FISH): Different frequencies in fresh and stored sperm nuclei. Cytogenet Cell Genet. 1994;65:95–96. doi: 10.1159/000133608. [DOI] [PubMed] [Google Scholar]
  • 31.Spriggs E, Martin R. Analysis of segregation in a human male reciprocal translocation carrier, t(1;11) (p36.3;q13.1), by two-colour fluorescence in situ hybridization. Mol Reprod Dev. 1994;38:247–250. doi: 10.1002/mrd.1080380303. [DOI] [PubMed] [Google Scholar]
  • 32.Bischoff F, Nguyen D, Burt K, et al. Estimates of aneuploidy using multicolor fluorescence in situ hybridization on human sperm. Cytogenet Cell Genet. 1994;66:237–243. doi: 10.1159/000133702. [DOI] [PubMed] [Google Scholar]
  • 33.Williams B, Ballenger C, Malter H., et al. Non-disjunction in human sperm: results of fluorescence in situ hybridization studies using two and three probes. Hum Mol Genet. 1993;2:1929–1936. doi: 10.1093/hmg/2.11.1929. [DOI] [PubMed] [Google Scholar]
  • 34.Martin R, Rademaker A. Reliability of aneuploidy estimates in human sperm: results of fluorescence in situ hybridization studies using two different scoring criteria. Mol Reprod Dev. 1995;42:89–93. doi: 10.1002/mrd.1080420112. [DOI] [PubMed] [Google Scholar]
  • 35.Spriggs E, Rademaker A, Martin R. Aneuploidy in human sperm: Results of two-and three-colour fluorescence in situ hybridization using centromeric probes for chromosomes 1, 12, 15, 18, X and Y. Cytogenet Cell Genet. 1995;71:47–53. doi: 10.1159/000134060. [DOI] [PubMed] [Google Scholar]
  • 36.Martin R, Spriggs E, Ko E, et al. The relationship between paternal age, sex ratios and aneuploidy frequencies in human sperm as assessed by multicolour fluorescence in situ hybridization. Am J Hum Genet. 1995;57:1395–1399. [PMC free article] [PubMed] [Google Scholar]
  • 37.Martin R, Spriggs E, Rademaker A. Multicolour fluorescence in situ hybridization analysis of aneuploidy and diploidy frequencies in 225,846 sperm from ten normal men. Biol Reprod. 1996;54:394–398. doi: 10.1095/biolreprod54.2.394. [DOI] [PubMed] [Google Scholar]
  • 38.Spriggs E, Rademaker A, Martin R. Aneuploidy in human sperm: The use of multicolour fluorescence in situ hybridization (FISH) to test various theories of nondisjunction. Am J Hum Genet. 1996;58:356–362. [PMC free article] [PubMed] [Google Scholar]
  • 39.Blanco J, Egozcue J, Vidal F. Incidence of chromosome 21 disomy in human spermatozoa as determined by fluorescent in situ hybridization. Hum Reprod. 1996;11:722–726. doi: 10.1093/oxfordjournals.humrep.a019241. [DOI] [PubMed] [Google Scholar]
  • 40.MacDonald M, Hassold T, Harvey J, et al. The origin of 47,XXY and 47,XXX aneuploidy heterogeneous mechanisms and role of aberrant recombination. Hum Mol Genet. 1994;3:1365–1371. doi: 10.1093/hmg/3.8.1365. [DOI] [PubMed] [Google Scholar]
  • 41.Kinakin B, Rakemaker A, Martin RH. Paternal age effect of YY aneuploidy in human sperm assessed by fluorescence in situ hybridization. Cytogenet Cell Genet. 1997;78(2):116–119. doi: 10.1159/000134641. [DOI] [PubMed] [Google Scholar]
  • 42.Griffin D, Abruzzo M, Millie E, Sheean L, Feingold E, Sherman S, et al. Non-disjunction in human sperm: Evidence for an effect of increasing age. Hum Mol Genet. 1995;4:2227–2232. doi: 10.1093/hmg/4.12.2227. [DOI] [PubMed] [Google Scholar]
  • 43.Robbins W, Baulch J, Moore D, Weier H, Blakey D, Wyrobek A. Three probe FISH to assess chromosome X,Y, and 8 aneuploidy in sperm of 14 men from two healthy groups: Evidence for a paternal age effect on sperm aneuploidy. Reprod Fertil Dev. 1995;7:799–809. doi: 10.1071/rd9950799. [DOI] [PubMed] [Google Scholar]
  • 44.Martin R, Spriggs E, Ko E, Rademaker A. The relationship between paternal age, sex ratios and aneuploidy frequencies in human sperm as assessed by multicolour fluorescence in situ hybridization. Am J Hum Genet. 1995;57:1395–1399. [PMC free article] [PubMed] [Google Scholar]
  • 45.Meistrich M. Potential genetic risks of using semen collected during chemotherapy. Hum Reprod. 1993;8:8–10. doi: 10.1093/oxfordjournals.humrep.a137880. [DOI] [PubMed] [Google Scholar]
  • 46.Jenderny J, Rohrborn G. Chromosome analysis of human sperm. 1. First results with a modified method. Hum Genet. 1987;76:385–388. doi: 10.1007/BF00272450. [DOI] [PubMed] [Google Scholar]
  • 47.Genesca A, Benet J, Caballin M, et al. Significance of structural chromosome aberrations in human sperm: Analysis of induced aberrations. Hum Genet. 1990;85:495–499. doi: 10.1007/BF00194223. [DOI] [PubMed] [Google Scholar]
  • 48.Brandriff B, Meistrich M, Gordon L, et al. Chromosomal damage in sperm of patients surviving Hodgkin's disease following MOPP (nitrogen mustard, vincristine, procarbazine and prednisone) therapy with and without radiotherapy. Hum Genet. 1994;93:295–299. doi: 10.1007/BF00212026. [DOI] [PubMed] [Google Scholar]
  • 49.Jenderny J, Jacobi M, Ruger A, Rohrborn G. Chromosome aberrations in 450 sperm complements from eight controls and lack of increase after chemotherapy in two patients. Hum Genet. 1992;90:151–154. doi: 10.1007/BF00210762. [DOI] [PubMed] [Google Scholar]
  • 50.Martin RH, Ernst S, Rademaker A, Barclay L, Ko E, Summers N. Analysis of human sperm karyotypes in testicular cancer patients before and after chemotherapy. Cytogenet Cell Genet. 1997;78:120–123. doi: 10.1159/000134642. [DOI] [PubMed] [Google Scholar]
  • 51.Martin R, Ernst S, Rademaker A, et al. Chromosomal abnormalities in sperm from testicular cancer patients before and after chemotherapy. Hum Genet. 1997;99:214–218. doi: 10.1007/s004390050342. [DOI] [PubMed] [Google Scholar]
  • 52.Liebaers I, Bonduelle M, van Assche E, et al. Sex chromosome abnormalities after intracytoplasmic sperm injection. Lancet. 1995;346:1095. [PubMed] [Google Scholar]
  • 53.Moosani N, Pattinson H, Carter M, et al. Chromosomal analysis of sperm from men with idiopathic infertility using sperm karyotyping in situ hybridization. Fertil Steril. 1995;64:811–817. doi: 10.1016/s0015-0282(16)57859-5. [DOI] [PubMed] [Google Scholar]
  • 54.Pang M, Zackowski J, Hoegerman S, et al. Detection by fluorescence in situ hybridisation of chromosome 7, 11, 12, 18, X and Y abnormalities in sperm from oligoasthenospermic patients of an in vitro fertilisation program. J Assist Reprod Genet. 1995;12:53S. [Google Scholar]
  • 55.Miharu N, Best R, Young S. Numerical chromosome abnormalities in spermatozoa of fertile and infertile men detected by fluorescence in situ hybridization. Hum Genet. 1994;93:502–506. doi: 10.1007/BF00202812. [DOI] [PubMed] [Google Scholar]
  • 56.Egozcue J, Templado C, Vidal F, et al. Meiotic studies in a series of 1100 infertile and sterile males. Hum Genet. 1983;65:185–188. doi: 10.1007/BF00286660. [DOI] [PubMed] [Google Scholar]
  • 57.Speed R, Chandley A. Prophase of meiosis in human spermatocytes analyzed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum Genet. 1990;84:547–554. doi: 10.1007/BF00210808. [DOI] [PubMed] [Google Scholar]
  • 58.Hassold T, Sherman S, Pettay D, et al. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am J Hum Genet. 1991;49:253–260. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES